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Overview/Keywords/References

Advanced Engineering Mathematics Slide Set Seven

Polar Geometries and Small Amplitude Vibrations

Reference Text: EK 12.9

• See Also:

· Lecture Notes : 15.LN.WaveEquation
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Before We Begin

Quote of Slide Set Seven

All these squawking birds won’t quit. Building nothing, laying
bricks.

The Shins : Caring Is Creepy (2001)
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Acoustics

Acoustics is the study of sound and sound is a traveling
wave which is an oscillation of pressure transmitted through a
solid, liquid, or gas, composed of frequencies within the range
of hearing and of a level sufficiently strong to be heard, or the
sensation stimulated in organs of hearing by such vibrations.

• The model equation for the evolution of this traveling wave
is unclear.

One would hope that the linear wave equation is appropriate
but hope is far from rigor.
Problem: Using continuum mechanics, derive an equation
modeling traveling waves in a pressure field.
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Conservation Equations - Part I

Recall that in our derivation of the heat/diffusion equation we
obtained the following conservation principle,

ut + div(φ) = f(x, t), x ∈ R
3, (1)

where u is a density (stuff/unit volume) and φ is its flux
(stuff/unit area · unit time). For acoustics we adopt the
following,

· Mass Density : u = ρ

· Mass Flux : φ = ρν, where ν ∈ R
3 is the velocity field.

Conservation of mass implies,

ρt + div(ρν) = 0. (2)
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Conservation Equations - Part II

Momentum must also be conserved. In this case we have,

· Momentum Density : u = ρν

· Momentum Flux : φ = ρν2 where
[

ν2
]

i
= ν2

i

· Newton’s Second Law : f(x, t) = −∇p where p(x, t) is the
pressure field

Conservation of momentum now reads,

(ρ[ν]i)t + div(ρν2) = −[∇p]i, i = 1, 2, 3. (3)

Problem: This system is nonlinear and has fewer equations
(four) than unknowns (five) and thus must be closed by some
constitutive relation.
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Constitutive Relation

It is sensible to assume that pressure is a function of mass
density. It is typical to assume that,

p = F (ρ) = κργ , κ > 0, γ > 1 (4)

so that, F ′(ρ) > 0, pressure is an increasing function of
density. However, things simplify under the assumption that
the pressure-field undergoes SMALL DISTURBANCES. That is,

p = F (ρ0 + ρ̃) = F (ρ0) + F ′(ρ0)ρ̃ + · · · = p0 + c2ρ̃ + · · · (5)

where ρ = ρ0 + ρ̃ represents a small perturbation, ρ̃ from the
rest pressure-field ρ0. Note that,

[c] =
[

√

F ′(ρ0)
]

=
length
time

, (6)

is called the sound-speed of the acoustic medium.
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Linearization

Now that the equations close we rewrite them neglecting
products of small terms:

ρt + div(ρν) = (ρ0 + ρ̃)t + div((ρ0 + ρ̃)ν̃) (7)

= ρ̃t + ρ0div(ν̃) = 0, (8)

(ρ[ν]i)t + div(ρν2) + [∇p]i = ((ρ0 + ρ̃)[ν̃]i)t + div((ρ0 + ρ̃)ν̃2)+

(9)

+ [∇
(

p0 + c2ρ̃ + · · ·
)

]i (10)

= ρ0ν̃t + c2∇ρ̃ = 0. (11)

These equations are called the ACOUSTIC APPROXIMATION

equations and model the evolution of small deviations ρ̃ and ν̃

from the ambient state ρ0 and ν = 0.
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Reduction to Linear Wave Equations

It is possible to reduce (8) and (11) to wave equations. First,
take the time-derivative of (8) and the divergence of (11) to
get,

ρ̃tt + ρ0div(ν̃)t = ρ̃tt + ρ0div(ν̃t) (12)

= ρ̃tt − c2div (∇ρ̃) (13)

= ρ̃tt − c2△ρ̃ = 0. (14)

Similarly, for an irrotational velocity field, if we take the
gradient of (8) and the time-derivative of (11) we get,

ρ0ν̃tt + c2∇ρ̃t = ρ0ν̃tt − ρ0c
2∇div(ν̃) (15)

= ρ0ν̃tt − ρ0c
2△ν̃ = 0, (16)

which implies that small disturbances are propagated through
an acoustic medium by linear wave equations. Acoustics and the Wave Equation – p. 9/22



Conclusions - Part I

At this point we the following conclusions:

1. The conservation equations for density and velocity in an
acoustic medium are nonlinear and underdetermined.

2. If we consider the pressure to be a function of the density
then we can close the equations.

3. If we consider a Taylor expansion of this pressure function
truncated to linear terms then the conservation equations
linearize.

4. In this acoustic approximation small disturbances to the
medium are propagated via linear wave equations.

5. In the case of large disturbances the nonlinearity cannot be
neglected. The nonlinear equations predict the occurrence
of so-called shock-waves.
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Vibrations of an Ideally Elastic Circle

So, at this point we can consider the small amplitude
vibrations of an ideally elastic circular membrane, model the
dynamics human eardrum occurring right now. The PDE
reads,

∂2u

∂t2
= c2△u, (17)

where the physical domain is D =
{

(x, y) ∈ R
2 : x2 + y2 ≤ R2

}

for some R ∈ R
+. For something like a drumhead we require,

u(x, y) = 0, on ∂D. (18)

Key Point: The coordinate system should always be chosen
so that the boundary condition is as easy to express as
possible.
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△u in Polar Coordinates

To make the boundary condition easy to express we choose
polar coordinates, u(x, y, t) → u(r, θ, t). However, this yields a
new problem: ux(r, θ) =?. This is a question for the
multivariate chain rule.

ux(r, θ) = urrx + uθθx ⇒
⇒ uxx = (urrx) + (uθθx) = urxrx + urrxx + uθxθx + uθθxx

= urrr
2
x + urrxx + uθθθ

2
x + uθθxx.

A similar result holds for y. Computing these derivatives and
simplifying gives,

△u = uxx + uyy = urr + r−1ur + r−2uθθ (19)
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Full PDE

The Laplacian to polar coordinates gives the full PDE as:

utt = c2
(

urr + r−1ur + r−2uθθ

)

(20)

(r, θ) ∈ (0, R) × (−π, π] (21)

u(r, θ, 0) = f(r, θ) (22)

ut(r, θ, 0) = g(r, θ) (23)

u(R, θ, t) = 0 (24)

We will see that this gives a very different solution than the
similar problem in Cartesian coordinates whose solution is,

u(x, y, t) =

=
∞

∑

m=1

∞
∑

n=1

[Bnm cos(cλnm + B∗

nm sin(cλnmt)] sin

(

mπ

L1

x

)

sin

(

nπ

L2

y

)
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Separation of Variables

Assume that u(r, θ, t) = F (r, θ)G(t) to get,

G̈ + c2λG = 0, (25)

Frr + r−1Fr + r−2Fθθ + λF = 0 (26)

At this point one could assume that F (r, θ) = W (r)Q(θ) and
separate again. However, it should be clear that
Q(θ + 2π) = Q(θ) = sin(nθ), cos(nθ). Thus, the spatial equation
now reads,

W ′′ + r−1W ′ − n2r−2W + λW = 0, (27)

or

r2W ′′ + rW ′ + (r2λ − n)W = 0. (28)
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Bessel’s Equation - Part I

We now consider the transformation s =
√

λr on the previous
equation to get,

s2W ′′ + sW ′ + (s − n)W = 0. (29)

where the derivative now indicates a derivative with respect to
the s variable. This is nothing more than Bessel’s equation of
order n and we know the solutions to be,

Jn(s) = sn
∞

∑

m=0

(−1)ms2m

22m+nm!(n + m)!
, n = 1, 2, 3, . . . , (30)

which is an oscillatory, but not periodic, function.
Question: What should

√
λ be to satisfy Jn(

√
λR) = 0?
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Bessel’s Equation - Part II

We must now apply the boundary condition. That is, we must
require,

Jn(
√

λR) = 0, (31)

and find
√

λ. However, since the Bessel function is not
periodic we have no clear answer to this. It is known that there
are infinitely many roots to this special function and finding
them requires working with its infinite series definition. Let’s
just say that we have a set of constants αnm such that,

Jn(αnm) = 0, (32)

which gives
√

λnm = αnm/R.

Acoustics and the Wave Equation – p. 16/22



General Solution : Fourier-Bessel Series

We know G, Q, W as parametrized by n and m and thus have
enough to write down the general solution to this PDE as,

u(r, θ, t) =
∞

∑

m=1

∞
∑

n=1

[

Amn cos(c
√

λmnt) + Bmn sin(c
√

λmnt)
]

×

× Jn(
√

λmnr) cos(nθ)+

+
[

A∗

mn cos(c
√

λmnt) + B∗

mn sin(c
√

λmnt)
]

×

× Jn(
√

λmnr) sin(nθ)

Key Point: The time oscillations are the same as the wave
equation in (x, y) however now the spatial shape is being
controlled by Bessel functions. This can be used to imply that
the fundamental shapes allowed on a circular geometry are
somehow different than a rectangular geometry.
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Fourier-Bessel Series

To finish the problem we must find the coefficients. To do this,
we recall the known orthogonality relation,

〈Jn(rkn,m), Jn(rkn,i)〉 =

∫ R

0

rJn(rkn,m)Jn(rkn,i)dr (33)

=
δmi

2
[RJn+1(knmR)]2 . (34)

which shows that the coefficients in the Fourier-Bessel series,

f(r) =

∞
∑

m=1

amJn(kn,mr), (35)

are given by,

ai =
2

R2J2
n+1

(kn,mR)

∫ R

0

rJn(kn,ir)f(r)dr, i = 1, 2, 3, . . . . (36)
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Initial Conditions and Coefficients - Part I

The first initial condition gives,

u(r, θ, 0) = f(r, θ) (37)

=
∞

∑

m=1

∞
∑

n=1

AmnJn(
√

λmnr) cos(nθ) + A∗

mnJn(
√

λmnr) sin(nθ)

(38)

=

∞
∑

n=1

Bn(r) cos(nθ) + B∗

n(r) sin(nθ), (39)

where

Kn(r) =
1

π

∫ π

−π

f(r, θ) cos(nθ)dθ, (40)

K∗

n(r) =
1

π

∫ π

−π

f(r, θ) sin(nθ)dθ. (41)
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Initial Conditions and Coefficients - Part II

However, we also have,

Kn(r) =
∞

∑

m=1

AmnJn(
√

λmnr), (42)

K∗

n(r) =
∞

∑

m=1

A∗

mnJn(
√

λmnr). (43)

Using the orthogonality relations we have,

Amn =
2

R2J2
n+1

(
√

λmnR)

∫ R

0

rJn(r
√

λnm)Kn(r)dr, (44)

A∗

mn =
2

R2J2
n+1

(
√

λmnR)

∫ R

0

rJn(r
√

λnm)K∗

n(r)dr. (45)
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Initial Conditions and Coefficients - Part III

Lastly, we have,

Amn =
2

πR2J2
n+1

(
√

λmnR)

∫ π

−π

∫ R

0

rJn(r
√

λnm)(r)f(r, θ) cos(nθ)drdθ,

A∗

mn =
2

R2J2
n+1

(π
√

λmnR)

∫ π

−π

∫ R

0

rJn(r
√

λnm)f(r, θ) sin(nθ)drdθ.

Similarly, the second initial condition implies,

Bmn =

=
2

c
√

λmnπR2J2
n+1

(
√

λmnR)

∫ π

−π

∫ R

0

rJn(r
√

λnm)(r)g(r, θ) cos(nθ)drdθ,

B∗

mn =

=
2

c
√

λmnπR2J2
n+1

(
√

λmnR)

∫ π

−π

∫ R

0

rJn(r
√

λnm)g(r, θ) sin(nθ)drdθ.
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Conclusions - Part II

At this point we have the following conclusions:

1. When dealing with a PDE the coordinated system should
be chosen according to the boundary geometry.

2. Doing so changes the form that the Laplacian takes.

3. The Laplacian is a manifestly self-adjoint differential
operator and leads to Sturm-Liouville problems.

4. SL problems lead to a complete set of orthogonal basis
functions.

5. The orthogonal basis functions controls the shape of the
unknown function is space-time.

6. In different geometries you can get different shapes and
some of these shapes can be inherently more complicated
than in other geometries.
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