Using the document configuration of
mentclass[letterpaper,12pt]\{article\},\usepackage[top=2cm,bottom=2cm,left=2cm,right=2cm]\{geometry\}\usepackage\{amsmath,amssymb\}\usepackage\{fancyhdr\}\pagestyle\{fancy\}Replicatethefollowingoutput1:Problem1.Theunionoftwosets\mathcal{A}and\mathcal{B}isthesetofallelementsthatareinatleastone2ofthetwosetsandisdesignatedas$\mathcal{A}\cup\mathcal{B}$.Thisoperationiscommutative$\mathcal{A}\cup\mathcal{B}=\mathcal{B}\cup\mathcal{A}$andisassociative$(\mathcal{A}\cup\mathcal{B})\cup\mathcal{C}=\mathcal{A}\cup(\mathcal{B}\cup\mathcal{C})$.If$\mathcal{A}\subseteq\mathcal{B}$,then$\mathcal{A}\cup\mathcal{B}=\mathcal{B}$.Itthenfollowsthat$\mathcal{A}\cup\mathcal{A}=\mathcal{A},\mathcal{A}\cup\{\varnothing\}=\mathcal{A}and\mathcal{U}\cup\mathcal{A}=\mathcal{U}$.undefined

Problem 2. Applying l'Hôpital's rule, one has ${ }^{3}$

$$
\lim _{x \rightarrow 0} \frac{\ln \sin \pi x}{\ln \sin x}=\lim _{x \rightarrow 0} \frac{\pi \frac{\cos \pi x}{\sin \pi x}}{\frac{\cos x}{\sin x}}=\lim _{x \rightarrow 0} \frac{\pi \tan x}{\tan \pi x}=\lim _{x \rightarrow 0} \frac{\pi / \cos ^{2} x}{\pi / \cos ^{2} \pi x}=\lim _{x \rightarrow 0} \frac{\cos ^{2} \pi x}{\cos ^{2} x}=1
$$

Problem 3. The gamma function Γx is defined as

$$
\Gamma(x) \equiv \lim _{n \rightarrow \infty} \prod_{v=0}^{n-1} \frac{n!n^{x-1}}{x+v}=\lim _{n \rightarrow \infty} \frac{n!n^{x-1}}{x(x+1)(x+2) \cdots(x+n-1)} \equiv \int_{0}^{\infty} e^{-t} t^{x-1} d t
$$

Problem 4. The total number of permutations of n elements taken m at a time (symbol P_{n}^{m}) is ${ }^{4}$

$$
P_{n}^{m}=\prod_{i=0}^{m-1}(n-1)=\underbrace{n(n-1)(n-2) \ldots(n-m+1)}_{\text {total of } m \text { factors }}=\frac{n!}{(n-m)!}
$$

Problem 5. After researching headers in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, develop your own header to be used with this assignment and all future assignments. The header should contain your name, the assignment reference and, optionally, the date of submission ${ }^{5}$.

[^0]
[^0]: ${ }^{1}$ research footnote, description and vspace(I used a 5 mm vertical spacing between items) in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$
 ${ }^{2}$ research cup, cap and other set operators in $\mathrm{E}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.
 ${ }^{3}$ research accents, lim and frac in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$
 ${ }^{4}$ research overbrace and underbrace in $\mathrm{E}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$
 ${ }^{5}$ Also research fancyhdr and today

