
Working with spectral lineshapes 
•  For atomic system, replace Dirac delta with transition 

lineshape 

•  Lorentzian lineshape (radiative, collisional broadening) 

 
•  Doppler broadened (Gaussian) lineshape 
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Lorentzian vs Gaussian lineshapes 
•  Lorentzian is much broader in spectral wings than 

Gaussian 
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Natural broadening 
•  Radiative broadening comes from the spontaneous 

emission lifetime of the state: energy-time uncertainty 
•  Fourier transforms 

–  Forward: FT 

–  Inverse: FT-1 

•  Suppose exponential, oscillating decay in time domain 
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Lorentzian lineshape 
•  Complex Lorentzian separated into Re and Im 

–  Real part corresponds to absorption effects 

•  Normalize 

•  Convert ω to ν 
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Collisional broadening 
•  Elastic collisions don’t cause transition, but interrupt the 

phase 
•  Timescales: 

–  Period of EM cycle much less than radiative lifetime 

–  Avg time btw collisions < lifetime 

–  Duration of a collision << time btw coll, lifetime 

•  Calculation:  
–  FT over time 0 to τ1 to get lineshape for a specific oscillation length 
–  Average over probability of a given time between collisions:  
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Doppler broadening 
•  From relative velocity of atom to input beam, Doppler shift: 

–  Each atom in distribution is shifted according to its velocity 

•  Boltzmann distribution 

•  Average over distribution to get effective lineshape: 
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Doppler broadening in HeNe lasers 
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Inhomogeneous vs homogeneous 
broadening 

•  Homogeneous broadening: 
every atom is broadened by 
same shape 
–  Radiative, collisional, phonon 
–  All atoms participate in absorption 

or gain 

•  Inhomogeneous broadening:  
–  Doppler broadening 
–  Absorption or gain only by atoms in 

resonance 
–  Leads to “spectral hole burning” 



Fermi’s golden rule generalized 
•  To account for the transition lineshape: 

•  Example: narrow linewidth laser incident on atom  

 
•  Total transition rate:  
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Cross sections 
•  It is inconvenient to carry around all these constants and 

to use the dipole moments 
–  Use values that connect to what we can measure 

•  Consider a beam passing through a gas of atoms with 
number density Nt (atoms/unit volume) 

•  Power absorbed/unit volume: 

•  Photon flux (photons/area/sec) 

•  Power in beam: 

•  Evolution of flux:    
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Cross sections 
•  Flux decreases as beam propagates in medium 

•  Define total absorption cross-section:  
 
•  So that: 

•  Physically, the cross-section is an effective area of the 
atom. In a low density gas, the beam of photons sees a 
collection of spheres:  
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Frequency-dependent cross section 
•  Total cross section is obtained by integrating over 

lineshape (h for homogeneous): 

•  Suppose we have a narrowband laser beam with a 
frequency that we can tune 
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