Atomic response to EM waves

Connections: susceptibility, dielectric constant, refractive index
Complex refractive index, damped propagation
Microscopic to macroscopic material response
Radiation from accelerating charge
Classical oscillator model for dispersion
QM estimation of dipole response

Maxwell's Equations to wave eqn

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\begin{array}{ll}
\vec{\nabla} \cdot \mathbf{E}=0 & \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\vec{\nabla} \cdot \mathbf{B}=0 & \vec{\nabla} \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}
\end{array}
$$

Take the curl:

$$
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\frac{\partial}{\partial t} \vec{\nabla} \times \mathbf{B}=-\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}\right)
$$

Use the vector ID:

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \\
& \vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-(\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E}=-\vec{\nabla}^{2} \mathbf{E} \\
& \vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}} \quad \text { "Inhomogeneous Wave Equation" }
\end{aligned}
$$

Maxwell's Equations in a Medium

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}
$$

- Sinusoidal waves of all frequencies are solutions to the wave equation
- The polarization (\mathbf{P}) can be thought of as the driving term for the solution to this equation, so the polarization determines which frequencies will occur.
- For linear response, \mathbf{P} will oscillate at the same frequency as the input.

$$
\mathbf{P}(t)=\varepsilon_{0} \chi \mathbf{E}(t)
$$

- Then once we know the susceptibility X, we can calculate the dielectric constant and the refractive index:

$$
\mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0}(1+\chi) \mathbf{E}=\varepsilon_{0} \varepsilon_{r} \mathbf{E}=\varepsilon_{0} n^{2} \mathbf{E}
$$

Complex refractive index

- We will see that when the incident light is near resonance, the atomic response becomes a complex function.
- What is the meaning of a complex refractive index?
- Let's separate out the real and imaginary parts:

$$
n=n_{R}+i n_{I}
$$

- then a plane wave propagating in the z direction is:

$$
\begin{aligned}
& E(z, t)=E_{0} e^{i(k z-\omega t)}=E_{0} e^{i\left(\frac{\omega}{c}\left(n_{R}+i n_{I}\right) z-\omega t\right)}=E_{0} e^{i\left(\frac{\omega}{c} n_{R} z-\omega t\right)} e^{i\left(\frac{\omega}{c}\left(i n_{I}\right) z\right)} \\
& E(z, t)=E_{0} e^{i\left(k_{R} z-\omega t\right)} e^{-\frac{\omega}{c} n_{I} z} \quad \begin{array}{l}
\text { For } n_{1}>0, \text { absorption } \\
\text { coefficient is }
\end{array} \quad \alpha=\frac{\omega n_{I}}{2 c} \\
& \begin{array}{ll}
\text { For } n_{1}<0, \text { gain } \\
\text { coefficient is }
\end{array}
\end{aligned} \quad g=\frac{\omega\left|n_{I}\right|}{2 c}
$$

Damped wave propagation

- If absorption length is much larger than the wavelength:

Typical for absorbing dielectric

- Here absorption length is comparable to the wavelength:

Typical for metal: damping length = "skin depth"

Connecting the macroscopic to the microscopic response

So determining the gain or loss coefficient depends on calculating the macroscopic induced polarization \mathbf{P} or equivalently the susceptibility X.

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}=N_{a} \mathbf{p}
$$

Note that the macrosopic polarization is really a density of dipole moments.
Recall: $\mathbf{p}=q \mathbf{r}$

So if the electric field is linearly polarized in the x-direction, then

$$
\mathbf{P}(t)=N_{a} \mathbf{p}(t)=-N_{a} e x(t)
$$

Here we treat $\mathrm{x}(\mathrm{t})$ as the position of the electron.

Radiation from accelerating charge

- Larmor formula for radiated power: $P_{\text {rad }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{3} \frac{e^{2} a^{2}}{c^{3}}$
- An accelerating charge "shakes" the field lines, creating radiating EM waves.

See link to physlet animation of radiation field lines from an oscillating charge: http://webphysics.davidson.edu/physlet_resources/dav_optics/Examples/oscillate_charge.html

- If the charge is moving as

$$
\begin{aligned}
& x(t)=x_{0} \cos \omega t \\
& p(t)=-e x_{0} \cos \omega t
\end{aligned}
$$

- Then the radiated power is
$P_{\text {rad }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{3} \frac{e^{2} \ddot{x}^{2}(t)}{c^{3}}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{3} \frac{e^{2}}{c^{3}} \omega^{4} x_{0}^{2} \cos ^{2} \omega t=-\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{3} \frac{e^{2} \omega^{4}}{c^{3}} p^{2}(t)$
- Power is proportional to E^{2}, so radiated field is proportional to $\mathrm{p}(\mathrm{t})$
- Applied field induces oscillating dipoles, which re-radiate the field.

Spring model for dipole response

- Assume electron is bound with a spring-like force, with resonant frequency ω_{0}
- Radiation will effectively damp the motion
- Damped-driven SHO equation of motion

$$
\begin{gathered}
m_{e} \ddot{x}(t)=-e E(t)-m_{e} \omega_{0}^{2} x(t)-2 m_{e} \gamma \dot{x}(t) \\
m_{e} \ddot{x}(t)+2 m_{e} \gamma \dot{x}(t)+m_{e} \omega_{0}^{2} x(t)=-e E_{0} e^{-i \omega t} \\
\text { let } x(t)=x_{0} e^{-i \omega t} \quad \begin{array}{l}
\text { x has to oscillate at driving frequency, } \\
\text { not resonance frequency }
\end{array} \\
-m_{e} \omega^{2} x_{0}-2 i \omega m_{e} \gamma x_{0}+m_{e} \omega_{0}^{2} x_{0}=-e E_{0} \quad e^{-i \omega t} \text { drops out } \\
x_{0}(\omega)=-\frac{e}{m_{e}} E_{0} \frac{1}{\omega_{0}^{2}-2 i \omega \gamma-\omega^{2}} \equiv-\frac{e E_{0}}{m_{e}} \frac{1}{D(\omega)} \quad \begin{array}{l}
\text { x fcn of } \mathrm{t}, \text { but } \\
\text { the amplitude } x_{0} \\
\text { depends on } \omega
\end{array}
\end{gathered}
$$

Spring model for dispersion

- Now we can go from the microscopic response $x(t)$ to the macroscopic X and n

$$
P(t)=-N_{a} e x(t)=\varepsilon_{0} \chi^{(1)} E(t) \rightarrow \chi^{(1)}=-\frac{N_{a} e x(t)}{\varepsilon_{0} E(t)}
$$

- $x(t)$ and $E(t)$ share time dependence, so

$$
\begin{gathered}
\chi^{(1)}(\omega)=-\frac{N_{a} e}{\varepsilon_{0}}\left(-\frac{e}{m_{e}} E_{0} \frac{e^{-i \omega t}}{D(\omega)}\right) \frac{1}{E_{0} e^{-i \omega t}}=\frac{N_{a} e^{2}}{\varepsilon_{0} m_{e}} \frac{1}{D(\omega)} \\
n^{2}(\omega)=1+\chi^{(1)}(\omega)=1+\frac{N_{a} e^{2}}{\varepsilon_{0} m_{e}} \frac{1}{D(\omega)}=1+\frac{N_{a} e^{2}}{\varepsilon_{0} m_{e}} \frac{1}{\omega_{0}^{2}-2 i \omega \gamma-\omega^{2}}
\end{gathered}
$$

This gives us the complex refractive index.

Complex refractive index

- Solve for real and imaginary parts

$$
n \rightarrow n_{r}+i n_{i}=1+\frac{N_{a} e^{2}\left(\omega_{0}{ }^{2}-\omega^{2}\right)}{2 \varepsilon_{0} m_{e}\left[\left(\omega_{0}{ }^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}\right]}+i \frac{N_{a} e^{2} \gamma \omega}{2 \varepsilon_{0} m_{e}\left[\left(\omega_{0}{ }^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}\right]}
$$

- Near the resonance

$$
n_{r}+i n_{i}=1+\frac{N_{a} e^{2}\left(\omega_{0}-\omega\right)}{4 \varepsilon_{0} m_{e} \omega_{0}\left[\left(\omega_{0}-\omega\right)^{2}+(\gamma / 2)^{2}\right]}+i \frac{N_{a} e^{2} \gamma}{8 \varepsilon_{0} m_{e} \omega_{0}\left[\left(\omega_{0}-\omega\right)^{2}+(\gamma / 2)^{2}\right]}
$$

Normalized plot of $n-1$ and k versus $\omega-\omega_{0}$
For more than one resonance,

$$
\begin{gathered}
n^{2}=1+\frac{N_{a} e^{2}}{\varepsilon_{0} m_{e}} \sum_{j} \frac{f_{j}}{\left(\omega_{j}^{2}-\omega^{2}-i \omega \gamma_{j}\right)} \\
\sum_{j} f_{j}=Z \quad \mathrm{f}=\text { oscillator strength }
\end{gathered}
$$

QM atomic transitions

We'll take an approach to understanding transitions from the quantum perspective

- An isolated atom in a pure energy eigenstate is in a stationary state:

$$
\psi_{n}(\mathbf{r}, t)=u_{n}(\mathbf{r}) e^{-E_{n} t / \hbar}
$$

- There is time dependence to the phase, but the amplitude remains constant. So, no transitions.
- An applied EM field of the right frequency can induce a mixture of two states:

$$
\psi_{1}(\mathbf{r}, t)=u_{1}(\mathbf{r}) e^{-E_{1} t / \hbar} \quad \psi_{2}(\mathbf{r}, t)=u_{2}(\mathbf{r}) e^{-E_{2} t / \hbar}
$$

- Superposition:

$$
\psi(\mathbf{r}, t)=a_{1}(t) \psi_{1}(\mathbf{r}, t)+a_{2}(t) \psi_{2}(\mathbf{r}, t)
$$

- w/ normalization: $\left|a_{1}(t)\right|^{2}+\left|a_{2}(t)\right|^{2}=1$

QM charge distribution

- The electron is not localized in QM.
- The charge density can be calculated from ψ :

$$
\rho(\mathbf{r}, t)=-e|\psi(\mathbf{r}, t)|^{2}
$$

- For a stationary state:

$$
\rho(\mathbf{r}, t)=-e\left|\psi_{n}(\mathbf{r}, t)\right|^{2}=-e\left|u_{n}(\mathbf{r}) e^{-E_{n} t / t}\right|^{2}=-e\left|u_{n}(\mathbf{r})\right|^{2}
$$

- No time dependence, charge is not moving!
- For a superposition state:

$$
\begin{aligned}
\rho(\mathbf{r}, t) & =-e|\psi(\mathbf{r}, t)|^{2}=-e\left|a_{1} \psi_{1}+a_{2} \psi_{2}\right|^{2} \\
& =-e\left(\left|a_{1} \psi_{1}\right|^{2}+\left|a_{2} \psi_{2}\right|^{2}+a_{1} a_{2}{ }^{*} \psi_{1} \psi_{2}{ }^{*}+a_{1}{ }^{*} a_{2} \psi_{1}{ }^{*} \psi_{2}\right)
\end{aligned}
$$

- Cross terms will lead to time dependence in the charge.

QM dipole moment calculation

- The nucleus is localized, but the electron charge is distributed.
- The effective position is calculated like the center of mass, so dipole moment is:

$$
\mu(t)=-e\binom{\int \mathbf{r}\left|a_{1} \psi_{1}\right|^{2} d V+\int \mathbf{r}\left|a_{2} \psi_{2}\right|^{2} d V}{+\int a_{1} a_{2}{ }^{*} \mathbf{r} \psi_{1} \psi_{2}{ }^{*} d V+\int a_{1}{ }^{*} a_{2} \mathbf{r} \psi_{1}{ }^{*} \psi_{2} d V} \rightarrow \mathbf{r}
$$

- Terms in red go to zero: parity.

Time dependent dipole moment

- The cross terms (which are like interference terms in optics), lead to time dependent oscillation:
$\mu_{o s c}(t)=-e\left(a_{1} a_{2}{ }^{*} \int \mathbf{r} \psi_{1} \psi_{2}{ }^{*} d V+a_{1}{ }^{*} a_{2} \int \mathbf{r} \psi_{1}{ }^{*} \psi_{2} d V\right)$
$=-e\left(a_{1} a_{2}{ }^{*} \int \mathbf{r} u_{1}(\mathbf{r}) u_{2}^{*}(\mathbf{r}) e^{+i\left(E_{2}-E_{1}\right) t / \hbar} d V+a_{1}{ }^{*} a_{2} \int u_{1}(\mathbf{r}) u_{2}^{*}(\mathbf{r}) e^{-i\left(E_{2}-E_{1}\right) t / \hbar} d V\right)$
- Oscillation frequency: $\omega_{21}=\left(E_{2}-E_{1}\right) / \hbar$
$\mu_{\text {osc }}(t)=-e \operatorname{Re}\left[2 a_{1} a_{2}^{*} \mu_{21} e^{i \omega_{21} t}\right]$
$\mu_{21}=\int u_{1}(\mathbf{r})(-e \mathbf{r}) u_{2}^{*}(\mathbf{r}) d V \quad$ Dipole "matrix element"
- μ_{21} is the part that depends on the atomic structure, independent of the populations.
- This is a vector, but the direction of r corresponds to the E-field direction, relative to the atom or molecule.

QM dipole radiation: lifetime

- Estimate the radiated power from this oscillating dipole.

$$
\begin{array}{ll}
P_{r a d}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{3} \frac{e^{2} \ddot{x}^{2}(t)}{c^{3}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{3} \frac{\ddot{\mu}^{2}(t)}{c^{3}} & \text { Note: } \mu=\mathrm{p} \\
\mu_{o s c}(t)=-e \operatorname{Re}\left[2 a_{1} a_{2}^{*} \mu_{21} e^{i \omega_{21} t}\right] & \left(z+z^{*}\right)^{2}=|z|^{2} \\
P_{r a d}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{3} \frac{4 e^{2} \omega_{21}{ }^{4} \mu_{21}{ }^{2}}{c^{3}}\left|a_{1}\right|^{2}\left|a_{2}\right|^{2} \cos \left[\omega_{21} t\right]
\end{array}
$$

Time average over fast oscillation:

$$
\bar{P}_{r a d}=P_{r a d}^{\prime}\left|a_{1}\right|^{2}\left|a_{2}\right|^{2}, \quad P_{r a d}^{\prime}=\frac{e^{2} \omega_{21}^{4} \mu_{21}{ }^{2}}{3 \pi \varepsilon_{0} c^{3}} \equiv \frac{\hbar \omega_{21}}{\tau_{s p}}
$$

$$
\tau_{s p}=\frac{1}{A_{21}}=\frac{3 \pi \hbar \varepsilon_{0} c^{3}}{e^{2} \omega_{21}{ }^{3} \mu_{21}{ }^{2}}
$$

Estimate of spontaneous lifetime

Spontaneous decay

- If we assume that the excitation probability of the upper level is small, then $\left|a_{1}\right|^{2}=1-\left|a_{2}\right|^{2} \approx 1$
- We can then deduce the change in upper level population:

$$
\begin{aligned}
& \frac{d E}{d t}=-\bar{P}_{r a d}=\hbar \omega_{21} \frac{d}{d t}\left|a_{2}(t)\right|^{2} \\
& \frac{d}{d t}\left|a_{2}(t)\right|^{2} \approx-\frac{1}{\tau_{s p}}\left|a_{2}(t)\right|^{2} \rightarrow\left|a_{2}(t)\right|^{2} \approx\left|a_{2}(0)\right|^{2} \exp \left[-t / \tau_{s p}\right]
\end{aligned}
$$

- This connects the spontaneous emission rate to a quantum calculation of the dipole moment.

Selection rules

- In Dirac notation, the dipole matrix element is:

$$
\mu_{21}=\langle 2|-e \mathbf{r}|1\rangle=\int u_{1}(\mathbf{r})(-e \mathbf{r}) u_{2}^{*}(\mathbf{r}) d V
$$

- Working with the symmetries of wavefunctions leads to selection rules about which transitions can take place.
- Parity: r is odd, so $u 1$ must be opposite parity of $u 2$
- Angular momentum: $\Delta l= \pm 1$. Photon carries 1 unit of ang. mom.
- Exceptions:
- Transition might take place under other moments:
- Magnetic dipole, electric quadrupole, etc.
- Leads to longer lifetimes.
- States might not be "pure", mixture of eigenstates
- External or internal perturbations

HeNe laser transitions

Fig. 3: The most important laser transitions in the neon system

