Atomic response to EM waves

Connections: susceptibility, dielectric constant, refractive index
Complex refractive index, damped propagation

Microscopic to macroscopic material response

Radiation from accelerating charge

Classical oscillator model for dispersion

QM estimation of dipole response



Maxwell's Equations to wave egn

« The induced polarization, P, contains the effect of the medium:
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“Inhomogeneous Wave Equation”




Maxwell's Equations in a Medium

* The induced polarization, P, contains the effect of the medium:

 Sinusoidal waves of all frequencies are solutions to the wave equation

* The polarization (P) can be thought of as the driving term for the
solution to this equation, so the polarization determines which

frequencies will occur.
* For linear response, P will oscillate at the same frequency as the input.

P(t):go)(E(t)

* Then once we know the susceptibility x, we can calculate the dielectric
constant and the refractive index:

D=¢E+P=¢,(l+y)E=¢¢ E=¢n’E



Complex refractive index

* We will see that when the incident light is near
resonance, the atomic response becomes a
complex function.

— What is the meaning of a complex refractive index?
— Let's separate out the real and imaginary parts:
n=n,+in,

— then a plane wave propagating in the z direction is:
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Damped wave propagation

 If absorption length is much larger than the wavelength:
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Typical for absorbing dielectric

* Here absorption length is comparable to the wavelength:
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Typical for metal:
damping length = “skin depth”



Connecting the macroscopic to the
microscopic response

So determining the gain or loss coefficient depends on calculating the
macroscopic induced polarization P or equivalently the susceptibility

X.
P(E) =g YE=NDp

Note that the macrosopic polarization is really a density of dipole
moments.

Recall: p=gr Eapplied

So if the electric field is linearly
polarized in the x-direction,
then

P(¢)=Np(t)=-N ex(¢)

Here we treat x(t) as the position of the electron.




Radiation from accelerating charge
1 2¢éa’
e Larmor formula for radiated power: o = Are. 3 o
0
* An accelerating charge “shakes” the field lines, creating
radiating EM waves.

See link to physlet animation of radiation field lines from an oscillating charge:
http://webphysics.davidson.edu/physlet_resources/dav_optics/Examples/oscillate _charge.html

— If the charge is moving as x(t)= x, coswt

— The dipole is p(t)z —e X, COS Wt
— Then the radiated power is
1 2e % (t 1 2¢ 1 2w
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— Power is proportional to E?, so radiated field is proportional to p(t)

* Applied field induces oscillating dipoles, which re-radiate
the field.



Spring model for dipole response

« Assume electron is bound with a spring-like force, with
resonant frequency w,

« Radiation will effectively damp the motion
 Damped-driven SHO equation of motion

m x(t)=—eE(t)—m,w,x(t)—2m,yx(t)
m x(t)+2m,yx(t)+mw;x(t)=—eE, e

let x(t) — xoe—iwr X has to oscillate at driving frequency,
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Spring model for dispersion

 Now we can go from the microscopic response
X(t) to the macroscopic x and n

() ==N,ex(1)=e,2 ()= 7 =~

— X(t) and E(t) share time dependence, so
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This gives us the complex refractive index.



Complex refractive index

» Solve for real and imaginary parts
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QM atomic transitions

We’'ll take an approach to understanding transitions from the
gquantum perspective

* An isolated atom in a pure energy eigenstate is in a

Stationary state: o (r,t) = (r)e—Ent/h

— There is time dependence to the phase, but the amplitude remains

constant. So, no transitions.

* An applied EM field of the right frequency can induce a
mixture of two states:

v (r.0)=u (r)e "y, (,0) = uy (r)e ="

— Superposition:
sei> 1//(r,t):al(t)y/l(r,t)+a2(t)1//2(r,t)

— w/ normalization: ‘al(t)‘z +‘a2(;)‘2 _1



QM charge distribution

The electron is not localized in QM.
The charge density can be calculated from w:
p(r.r)=—dw(r.c)
For a stationary state:
p(r.t)=—ely,(r.r)’ u, (r)
— No time dependence, charge is not moving!

For a superposition state:
2
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— Cross terms will lead to time dependence in the charge.



QM dipole moment calculation

* The nucleus is localized, but the electron charge
Is distributed.

* The effective position is calculated like the center
of mass, so dipole moment is: .

applied
2 dV p=gr

jr|alwl|2dV+Jr|a2w2|2dV 2 r

u(r)=—efr|y(r.)

+Ja1a2 ry\y, dvV+ J.al ary, y,dv

— Terms in red go to zero: parity.



Time dependent dipole moment

* The cross terms (which are like interference terms
In optics), lead to time dependent oscillation:

Hoge (t) = _e(alaz*_‘.“//ﬂ//; dv + al*az J-rllfl*lljz dV)

= —e(alaz*_‘-r u, (r)u, (r)e”(Ez_El)t/h dV+a, a, Jul (r)u, (r) g BB dV)

— Oscillation frequency: ®,,=(E,—E,)/h
Hose (t) = _eRe[zalaz*uzlein]
W, = J.ul (r)(—er)uz* (r)dv Dipole “matrix element”

* My, Is the part that depends on the atomic structure,

independent of the populations.
« This is a vector, but the direction of r corresponds to the E-field

direction, relative to the atom or molecule.



QM dipole radiation: lifetime

- Estimate the radiated power from this oscillating dipole.
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Spontaneous decay

If we assume that the excitation probability of the upper
level iIs small, then 2 2
|a1| —1—|a2| =1

We can then deduce the change in upper level population:

dE — d 2
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This connects the spontaneous emission rate to a
quantum calculation of the dipole moment.



Selection rules

* |In Dirac notation, the dipole matrix element is:
o, = (2] = ex|1) = i, (r)(~er)u, (x)av

« Working with the symmetries of wavefunctions leads to
selection rules about which transitions can take place.

— Parity: r is odd, so u1 must be opposite parity of u2
— Angular momentum: Al = £1. Photon carries 1 unit of ang. mom.

* Exceptions:
— Transition might take place under other moments:
« Magnetic dipole, electric quadrupole, etc.
 Leads to longer lifetimes.
— States might not be “pure”, mixture of eigenstates
« External or internal perturbations
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HeNe laser transitions
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FIG. 10.1. Relevant energy levels of the He-Ne laser.
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Fig. 3: The most important laser transitions in the neon



