
Atomic response to EM waves 
Connections: susceptibility, dielectric constant, refractive index 

Complex refractive index, damped propagation 

Microscopic to macroscopic material response 

Radiation from accelerating charge 

Classical oscillator model for dispersion 

QM estimation of dipole response 



Maxwell's Equations to wave eqn 
•  The induced polarization, P,  contains the effect of the medium:  
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Take the curl:"

“Inhomogeneous Wave Equation”"
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Use the vector ID:"

 A × B ×C( ) = B A ⋅C( )−C A ⋅B( )
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Maxwell's Equations in a Medium 
•  The induced polarization, P,  contains the effect of the medium:  

•  Sinusoidal waves of all frequencies are solutions to the wave equation 
•  The polarization (P) can be thought of as the driving term for the 
solution to this equation, so the polarization determines which 
frequencies will occur. 
•  For linear response, P will oscillate at the same frequency as the input. 

•  Then once we know the susceptibility χ, we can calculate the dielectric 
constant and the refractive index: 
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   P t( ) = ε0χE t( )

   D = ε0E+ P = ε0 1+ χ( )E = ε0ε r E = ε0n
2E



Complex refractive index 
•  We will see that when the incident light is near 

resonance, the atomic response becomes a 
complex function.  
–  What is the meaning of a complex refractive index?  
–  Let’s separate out the real and imaginary parts: 

–  then a plane wave propagating in the z direction is: 
n = nR + i nI
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E z, t( ) = E0ei kR z−ω t( )e
−ω
c
nI z For nI > 0, absorption 

coefficient is 
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Damped wave propagation 
•  If absorption length is much larger than the wavelength: 

•  Here absorption length is comparable to the wavelength: 
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Typical for absorbing dielectric 

Typical for metal: 
 damping length = “skin depth”  



Connecting the macroscopic to the 
microscopic response 
So determining the gain or loss coefficient depends on calculating the 
macroscopic induced polarization P or equivalently the susceptibility 
χ. "

   P E( ) = ε0χE = Nap

Note that the macrosopic polarization is really a density of dipole 
moments. "
Recall:"

So if the electric field is linearly 
polarized in the x-direction, 
then"

  P t( ) = Nap t( ) = −Nae x t( )

p = qr

+ - 

Eapplied 

r 

Here we treat x(t) as the position of the electron. "



Radiation from accelerating charge 
•  Larmor formula for radiated power: 
•  An accelerating charge “shakes” the field lines, creating 

radiating EM waves.  

 
–  If the charge is moving as 
–  The dipole is 
–  Then the radiated power is  

–  Power is proportional to E2, so radiated field is proportional to p(t) 

•  Applied field induces oscillating dipoles, which re-radiate 
the field. 
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1
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See link to physlet animation of radiation field lines from an oscillating charge: 
http://webphysics.davidson.edu/physlet_resources/dav_optics/Examples/oscillate_charge.html 
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Spring model for dipole response 
•  Assume electron is bound with a spring-like force, with 

resonant frequency ω0  
•  Radiation will effectively damp the motion 
•  Damped-driven SHO equation of motion 
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Spring model for dispersion 
•  Now we can go from the microscopic response 

x(t) to the macroscopic χ and n 

–   x(t) and E(t) share time dependence, so  
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This gives us the complex refractive index.  



Complex refractive index 
•  Solve for real and imaginary parts 

•  Near the resonance 
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QM atomic transitions 
We’ll take an approach to understanding transitions from the 
quantum perspective 
•  An isolated atom in a pure energy eigenstate is in a 
stationary state:  

–  There is time dependence to the phase, but the amplitude remains 
constant. So, no transitions. 

•  An applied EM field of the right frequency can induce a 
mixture of two states:  
 
–  Superposition: 

–  w/ normalization:   

 ψ n r,t( ) = un r( )e−Ent /

 ψ 1 r,t( ) = u1 r( )e−E1t /  ψ 2 r,t( ) = u2 r( )e−E2t /

ψ r,t( ) = a1 t( )ψ 1 r,t( ) + a2 t( )ψ 2 r,t( )

a1 t( ) 2 + a2 t( ) 2 = 1



QM charge distribution 
•  The electron is not localized in QM.  
•  The charge density can be calculated from ψ:  

•  For a stationary state:  

–  No time dependence, charge is not moving! 

•  For a superposition state: 

–  Cross terms will lead to time dependence in the charge.  
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2

= −e a1ψ 1
2 + a2ψ 2

2 + a1a2
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* + a1
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QM dipole moment calculation 
•  The nucleus is localized, but the electron charge 

is distributed.  
•  The effective position is calculated like the center 

of mass, so dipole moment is:  

–  Terms in red go to zero: parity.  
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Time dependent dipole moment 
•  The cross terms (which are like interference terms 

in optics), lead to time dependent oscillation: 

–  Oscillation frequency:  

 

µosc t( ) = −e a1a2
* rψ 1ψ 2

* dV∫ + a1
*a2 rψ 1
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= −e a1a2
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 ω 21 = E2 − E1( ) / 
µosc t( ) = −eRe 2a1a2

*µ21e
iω21t⎡⎣ ⎤⎦

µ21 = u1 r( ) −er( )u2* r( )dV∫ Dipole “matrix element” 

•  µ21 is the part that depends on the atomic structure, 
independent of the populations. 

•  This is a vector, but the direction of r corresponds to the E-field 
direction, relative to the atom or molecule.  



QM dipole radiation: lifetime 
•  Estimate the radiated power from this oscillating dipole.  
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Time average over fast oscillation: 
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2 Estimate of spontaneous lifetime 



Spontaneous decay 
•  If we assume that the excitation probability of the upper 

level is small, then 

•  We can then deduce the change in upper level population:  

•  This connects the spontaneous emission rate to a 
quantum calculation of the dipole moment.  

a1
2 = 1− a2

2 ≈1

 

dE
dt

= −Prad = ω 21
d
dt
a2 t( ) 2

d
dt
a2 t( ) 2 ≈ − 1

τ sp
a2 t( ) 2 → a2 t( ) 2 ≈ a2 0( ) 2 exp −t /τ sp⎡⎣ ⎤⎦



Selection rules 
•  In Dirac notation, the dipole matrix element is: 

•  Working with the symmetries of wavefunctions leads to 
selection rules about which transitions can take place.  
–  Parity: r is odd, so u1 must be opposite parity of u2 
–  Angular momentum: Δl = ±1. Photon carries 1 unit of ang. mom.  

•  Exceptions:  
–  Transition might take place under other moments:  

•  Magnetic dipole, electric quadrupole, etc. 
•  Leads to longer lifetimes.  

–  States might not be “pure”, mixture of eigenstates 
•  External or internal perturbations 

µ21 = 2 − er 1 = u1 r( ) −er( )u2* r( )dV∫



HeNe laser transitions 
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