

0.5 to 4.0 W, 798 to 800/808 to 812 nm Diode Lasers 2300 Series

Key Features

- 0.5, 1.2, 2.0 and 4.0 W CW power
 - 50, 100, 200 and 500 µm apertures
 - High-efficiency MOCVD quantum well design
 - TEC option for wavelength control
 - Open heatsink and window packages
 - High reliability

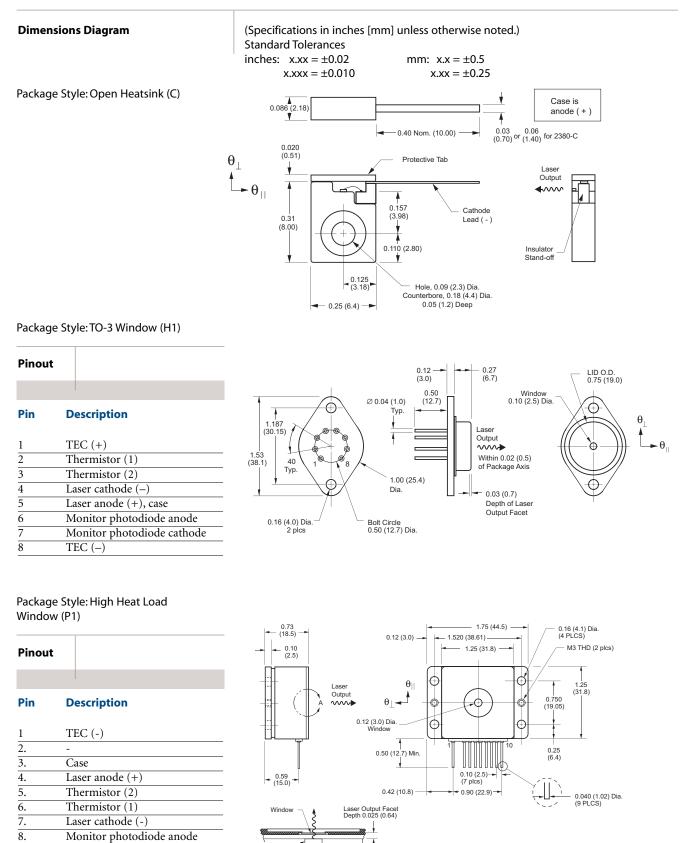
Applications

- Solid-state laser pumping
- Medical/ophthalmic
- Free-space communication
- Beacons/illumination

The 2300 series diode lasers offer high continuous wave (CW) optical power and high brightness with unsurpassed reliability. The small emitting aperture, combined with low beam divergence, makes the 2300 series one of the highest-brightness CW diode lasers available in the industry today.

The 2300 series consists of partially coherent broad area emitters with relatively uniform emission over the emitting aperture. Operation is multi-longitudinal mode with a spectral envelope width of approximately 2 nm FWHM. The far field beam divergence in the plane perpendicular to the P/N junction is nearly Gaussian, while the lateral beam profile exhibits a multiple-transverse mode pattern typical of broad area emitters. Emitting apertures for 2300 variants range from 50 to 500 μ m, giving CW power output capability of up to 4 W with superlative reliability. For still higher-power 100 and 200 μ m aperture devices, please see the 2400 series products.

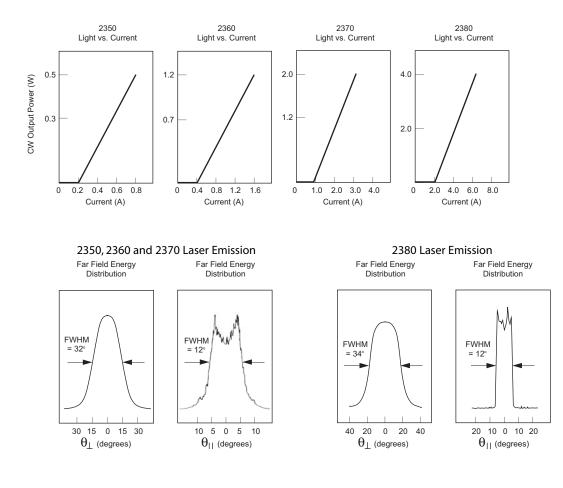
The high efficiency of the quantum well structure, combined with low thermal resistance epi-down chip mounting, provides minimum junction temperature at high optical power. Low junction temperature and low thermal resistance packages extend lifetime and increase reliability.

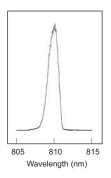

Convenient package options such as open heatsink and window packages with internal TEC and MPD allow easy integration into user systems.

Monitor photodiode cathode

TEC (+)

9.


10.


Detail 'A'

3

Typical Optical Characteristics

Typical Emission Spectrum

4

Available Configurations	2350 Series	2360 Series	2370 Series	2380 Series
	2350-C	2360-C	2370-C	2380-C
	2352-H1	2362-P1	2372-P1	2382-P1

Electro-optical Specifications

Parameter	Symbol	23	850 Serie	s	23	860 Serie	5	Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.	
Laser Characteristics								
CW output power	Po	_	-	0.5	_	_	1.2	W
Center wavelength	λ _c	808 (±3)	-	810 (±3)	798 (±3)) —	800 (±3)	nm
		_	-	_	808 (±3)) —	812 (±3)	nm
Spectral width	Δλ	_	2	_	_	2	_	nm
Slope efficiency	$\eta D = P_0/(I_{op}-I_{th})$	0.7	0.9	_	0.7	0.9	_	W/A
Conversion efficiency	$\eta = P_0/(I_{op}V_{op})$	_	30	_	_	30	_	%
Emitting dimensions	WxH	_	50 x 1	_	_	100 x 1	_	μm
FWHM beam divergence								
Parallel to junction	θ//	_	12	_	_	12	_	degrees
Perpendicular to junction		_	32	_	-	32	_	degrees
Threshold current	Ith	_	0.2	0.25	-	0.4	0.6	A
Operating current	I _{op}	_	0.8	0.85	_	1.6	1.8	А
Operating voltage	Vop	_	(note ⁵)	_	_	(note ⁵)	_	
Series resistance	Rs	_	0.5	0.7	_	0.25	0.5	Ω
Thermal resistance	R _{th}	_	12	_	_	10	_	°C/W
Recommended case temperature	T _c	-20	-	30	-20	_	30	°C
Absolute Maximum Ratings								
Reverse voltage	V _{rl}	-	-	3	_	-	3	V
Case operating temperature	Тор	-20	-	50	-20	_	50	°C
Storage temperature range	T _{stg}	-40	-	80	-40	_	80	°C
Lead soldering temperature	Tis	_	-	250 (5 sec.)	_	-	250 (5 sec.)	°C
Monitor Photodiode ¹								
Sensitivity	-	0.1	-	10.0	0.1	_	10.0	μA/mW
Capacitance	-	_	6	_	_	6	_	pF
Breakdown voltage	Vbd	_	25	_	_	25	_	V
Operating voltage	Vop	-	10	_	-	10	_	V
Thermoelectric Cooler ¹	i							
Drive current								
P1 package	I _{TE}	_	3.5	_	_	3.5	-	А
H1 package	ITE	_	1.4	_	_	NA	_	А
Drive voltage								
P1 package	VTE	_	8.0	_	_	8.0	-	V
H1 package	VTE	_	4.5	_	_	NA	-	V
Thermistor resistance	Rtherm	_	10	_	_	10	_	kΩ

Not available on C package.
Typical values at 25 °C and 0.6 NA collection optics.
Features common to these products include:

a. Duty factor of 100%.

b. Temperature coefficient of wavelength is approximately 0.27 to 0.3 nm/°C.

c. Temperature coefficient of threshold current can be modeled as: $I_{TH2} = I_{TH1} \exp [(T_2 - T_1)/T_0]$

where T₀ is a device constant of about 160° K.

 d. Temperature coefficient of operating current is approximately 1% per °C.
4. Modulation bandwidth of CW diode lasers is approximately 1 GHz for C package diodes. P package diodes roll off at slightly lower frequencies due to inductance of pins and internal leads. 5. Forward voltage is typically:

 $V_f = 1.5 \text{ V} + I_{op} \text{ x } R_s.$

Electro-optical Specifications

Continued

Parameter	Symbol	23	370 Serie	s	2	380 Serie	S	Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.	
Laser Characteristics								
CW output power	Po	-	-	2	-	-	4	W
Center wavelength	λ _c	798 (±3)) —	800 (±3)	798 (±3) –	800 (±3)	nm
		808 (±3)) —	812 (±3)	808 (±3) –	812 (±3)	nm
Spectral width	Δλ	-	2		-	2		nm
Slope efficiency	$\eta_D = P_0/(I_{op}-I_{th})$	0.7	0.9	-	0.7	0.9	-	W/A
Conversion efficiency	$\eta = P_0/(I_{op}\tilde{V}_{op})$	-	30	-	-	30	-	%
Emitting dimensions (note ⁶)	WxH	_	200 x 1	_	-	500 x 1	_	μm
FWHM beam divergence								
Parallel to junction	θ//	-	12	-	-	12	-	degrees
Perpendicular to junction	θ_{\perp}	_	32	-	-	32	_	degrees
Threshold current	Ith	-	0.9	1.2	_	2.0	2.5	А
Operating current	I _{op}	_	3.1	3.4	-	6.3	6.8	А
Operating voltage	Vop	_	(note ⁵)	_	-	(note⁵)	_	
Series resistance	Rs	-	0.12	0.2	-	0.08	0.1	Ω
Thermal resistance	R _{th}	_	8	_	-	4	_	°C/W
Recommended case temperature	T _c	-20	-	30	-20	_	30	°C
Absolute Maximum Ratings								
Reverse voltage	Vrl	_	-	3	-	_	3	V
Case operating temperature	Тор	-20	-	50	-20	_	50	°C
Storage temperature range	T _{stg}	-40	-	80	-40	_	80	°C
Lead soldering temperature	Tis	_	-	250 (5 sec.)	-	_	250 (5 sec.)	°C
Monitor Photodiode ¹								
Sensitivity	-	0.1	-	10.0	0.1	_	10.0	μA/mW
Capacitance	_	_	6	_	-	6	_	pF
Breakdown voltage	Vbd	_	25	_	-	25	_	V
Operating voltage	Vop	_	10	_	-	10V	_	V
Thermoelectric Cooler ¹								
Drive current	ITE	_	3.5	_	-	3.5	_	А
Drive voltage	VTE	_	8.0	_	-	8.0	_	V
Thermistor resistance	R _{therm}	-	10	_	_	10	_	kΩ

Not available on C package.
Typical values at 25 °C and 0.6 NA collection optics.
Features common to these products include:

a. Duty factor of 100%. b. Temperature coefficient of wavelength is approximately 0.27 to 0.3 nm/°C. c. Temperature coefficient of threshold current can be modeled as: $I_{TH2} = I_{TH1} \exp [(T_2 - T_1)/T_0]$ where T_0 is a device constant of about 160 °K.

d. Temperature coefficient of operating current is approximately 1% per °C.

4. Modulation bandwidth of CW diode lasers is approximately 1 GHz for C package diodes. P package diodes roll off at slightly lower frequencies due to inductance of pins and internal leads. 5. Forward voltage is typically:

 $V_{\rm f} = 1.5 V + I_{\rm op} \times R_{\rm s}$. 6. The 2380 series near field consists of two active segments separated by an isolation space to produce specified aperture.

2300 SERIES DIODE LASERS

6

Ordering Information	

For more information on this or other products and their availability, please contact your local JDSU account manager or JDSU directly at 1-800-498-JDSU (5378) in North America and +800-5378-JDSU worldwide or via e-mail at customer.service@jdsu.com.

Sample: 23-00002

Laser Chip: 50 µm Stripe Package Style: Open Heat Sink with No MPD

Part Number	Wavelength	Power	
23-00002	808 ± 3 nm	0.5 W	
23-00003	809 ± 3 nm	0.5 W	
23-00236	810 ± 3 nm	0.5 W	

Laser Chip: 100 µm Stripe Package Style: Open Heat Sink with No MPD

Part Number	Wavelength	Power	
23-00016	798 ± 3 nm	1.2 W	
23-00017	799 ± 3 nm	1.2 W	
23-00219	800 ± 3 nm	1.2 W	
23-00019	808 ± 3 nm	1.2 W	
23-00020	809 ± 3 nm	1.2 W	
23-00201	810 ± 3 nm	1.2 W	
23-00022	811 ± 3 nm	1.2 W	
23-00015	812 ± 3 nm	1.2 W	

Laser Chip: 200 µm Stripe Package Style: Open Heat Sink with No MPD

Part Number	Wavelength	Power	
23-00049	798 ± 3 nm	2.0 W	
23-00050	799 ± 3 nm	2.0 W	
23-00203	800 ± 3 nm	2.0 W	
23-00052	808 ± 3 nm	2.0 W	
23-00053	809 ± 3 nm	2.0 W	
23-00204	810 ± 3 nm	2.0 W	
23-00055	811 ± 3 nm	2.0 W	
23-00056	812 ± 3 nm	2.0 W	

Laser Chip: 500 µm Stripe Package Style: Open Heat Sink with No MPD

Part Number	Wavelength	Power	
23-00083	798 ± 3 nm	4.0 W	
23-00084	799 ± 3 nm	4.0 W	
23-00207	800 ± 3 nm	4.0 W	
23-00086	808 ± 3 nm	4.0 W	
23-00087	809 ± 3 nm	4.0 W	
23-00208	810 ± 3 nm	4.0 W	
23-00089	811 ± 3 nm	4.0 W	
23-00090	812 ± 3 nm	4.0 W	

Laser Chip: 50 µm Stripe Package Style: TO-3 with TEC and MPD

Part Number	Wavelength	Power	
23-00006	808 ± 3 nm	0.5 W	
23-00007	809 ± 3 nm	0.5 W	
23-00237	810 ± 3 nm	0.5 W	

Laser Chip: 100 µm Stripe Package Style: High Heat Load with TEC and MPD

Part Number	Wavelength	Power	
23-00025	798 ± 3 nm	1.2 W	
23-00026	799 ± 3 nm	1.2 W	
23-00202	800 ± 3 nm	1.2 W	
23-00028	808 ± 3 nm	1.2 W	
23-00029	809 ± 3 nm	1.2 W	
23-00200	810 ± 3 nm	1.2 W	
23-00031	811 ± 3 nm	1.2 W	
23-00032	812 ± 3 nm	1.2 W	

Laser Chip: 200 µm Stripe Package Style: High Heat Load with TEC and MPD

Part Number	Wavelength	Power	
23-00059	798 ± 3 nm	2.0 W	
23-00060	799 ± 3 nm	2.0 W	
23-00205	800 ± 3 nm	2.0 W	
23-00062	808 ± 3 nm	2.0 W	
23-00063	809 ± 3 nm	2.0 W	
23-00206	810 ± 3 nm	2.0 W	
23-00065	811 ± 3 nm	2.0 W	
23-00066	812 ± 3 nm	2.0 W	

Laser Chip: 500 µm Stripe Package Style: High Heat Load with TEC and MPD

Part Number	Wavelength	Power	
23-00091	798 ± 3 nm	4.0 W	
23-00092	799 ± 3 nm	4.0 W	
23-00210	800 ± 3 nm	4.0 W	
23-00094	808 ± 3 nm	4.0 W	
23-00095	809 ± 3 nm	4.0 W	
23-00209	810 ± 3 nm	4.0 W	
23-00097	811 ± 3 nm	4.0 W	
23-00098	812 ± 3 nm	4.0 W	

User Safety

Safety and Operating Considerations

The laser light emitted from this diode laser is invisible and may be harmful to the human eye. Avoid looking directly into the diode laser or into the collimated beam along its optical axis when the device is in operation.

CAUTION: THE USE OF OPTICAL INSTRUMENTS WITH THIS PRODUCT WILL INCREASE EYE HAZARD.

Operating the diode laser outside of its maximum ratings may cause device failure or a safety hazard. Power supplies used with the component must be employed such that the maximum peak optical power cannot be exceeded.

CW diode lasers may be damaged by excessive drive current or switching transients. When using power supplies, connect the diode laser with the main power on and the output voltage at zero. The current should be increased slowly while the diode laser output power and the drive current are monitored.

Device degradation accelerates with increased temperature, and therefore careful attention to minimize the case temperature is advised. For example, life expectancy will decrease by a factor of four if the case is operated at 50 °C rather than 30 °C.

A proper heatsink for the diode laser on a thermal radiator will greatly enhance laser life. Firmly mount the laser on a radiator with a thermal impedance of less than 0.5 °C/W for increased reliability.

ESD PROTECTION - Electrostatic discharge is the primary cause of unexpected diode laser failure. Take extreme precaution to prevent ESD. Use wrist straps, grounded work surfaces and rigorous antistatic techniques when handling diode lasers.

Labeling

21 CFR 1040.10 Compliance

Because of the small size of these devices. each of the labels shown is attached to the individual shipping container. They are illustrated here to comply with 21 CFR 1040.10 as applicable under the Radiation Control for Health and Safety Act of 1968.

Serial Number Identification Label

JDS Uniphase Corporation SAN JOSE, CALIFORNIA 95134 U.S.A.			
MODEL:		S/N:	
MANUFACTURED:			
WAVELENGTH:		I op:	
This laser product of	complies with 21	CFR 1040	as applicable

Package Aperture Labels

DANGER

H1 Package Diodes

P1 Package Diodes

2350

All statements, technical information and recommendations related to the products herein are based upon information believed to be reliable or accurate. However, the accuracy or completeness thereof is not guaranteed, and no responsibility is assumed for any inaccuracies. The user assumes all risks and liability whatsoever in connection with the use of a product or its application. JDSU reserves the right to change at any time without notice the design, specifications, function, fit or form of its products described herein, including withdrawal at any time of a product offered for sale herein. JDSU makes no representations that the products herein are free from any intellectual property claims of others. Please contact JDSU for more information. JDSU and the JDSU logo are trademarks of JDS Uniphase Corporation. Other trademarks are the property of their respective holders. ©2006 JDS Uniphase Corporation. All rights reserved. 10127809 Rev. 004 08/06 2300DIODELASER.DS.CL.AE