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Lecture: Chapter 7 - Wrap Up Module: 07

Suggested Problem Set: Suggested Problems : {n/a} February 5, 2009

Quote of Lecture 7

Chairman Kaga: If memory serves me right ...

Iron Chef: (1993-1999)

In conclusion of chapter 7 we summarize the important results concerning the linear system of equations

Ax = b where A ∈ Rm×n, x ∈ Rn×1, b ∈ Rm×1. Specifically, we begin with the following system of linear

equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3(1)

... =
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm,

which we know has the following matrix-vector representation,

(2) Ax =

266666664

a11 a12 a13 . . . a1m

a21 a22 a23 . . . a2m

a31 a32 a33 . . . a3m

...
...

...
. . .

...

an1 an2 an3 . . . anm

377777775

266666664

x1

x2

x3

...

xn

377777775
=

266666664

b1

b2

b3

...

bm

377777775
= b,

where the product of matrices is defined as [AB]ij =

nX
k=1

aikbkj . 1 We note that this system can also be

defined as a linear combination of vectors,

(3) Ax = x1a1 + x2a2 + x3a3 + · · ·xnan =

nX
j=1

xjaj = b,

where ai ∈ Rm is the ith column from the coefficient matrix A. Given A and b we ask,

• Does there exist a solution to the linear system Ax = b?

with the understanding that there may exist a solution and this solution may be unique. Thus, we have

three possible outcomes when trying to solve Ax = b,

(1) There exists a solution to Ax = b,

(2) There exists a solution to Ax = b and this solution is unique,

(3) There does not exist a solution to Ax = b,

1The following website contains an animation of matrix multiplication, http://www.sci.wsu.edu/math/faculty/

genz/220v/lessons/kentler/FullMult/fullMatrixMultiply.html. We should note that, visually, this is not the same

way we multiply but it is equivalent. This goofy animation, http://www.purplemath.com/modules/mtrxmult.htm is

similar to how we conduct multiplication.
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which can be seen in the 1D case by quick but careful inspection of ax = b, a, b ∈ R. For the case of

coefficient data from Rm×n, we form an augmented matrix:

(4)

266666664

a11 a12 a13 . . . a1m b1

a21 a22 a23 . . . a2m b2

a31 a32 a33 . . . a3m b3

...
...

...
. . .

...

an1 an2 an3 . . . anm bm

377777775
and apply the row-reduction algorithm.2 to as This algorithm makes us of the following three rules for

manipulating augmented matrices,

(1) row scaling: the multiplication a row by a nonzero scalar,

(2) row exchange: the exchanges of two rows,

(3) row replacement: the addition of a multiple of one row to another row,

which we know to be equivalent to algebra applied directly to the linear system of equations (1). We apply

this algorithm, when taken to full completion, in a two-part process. In the so-called forward phase we:

(1) Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.

(2) Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this

entry into the pivot position.

(3) Use row replacement operations to create zeros in all positions below the pivot.

(4) Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. apply

steps 1-3 to the submatrix that remains. Repeat the process until there are no more nonzero rows

to modify.

While, in the backward phase we:

(1) Begin with the rightmost pivot and working upward and to the left, create zeros above each pivot.

If a pivot is not 1, make it 1 by a scaling operation.

The forward phase produces a row echelon form of the input matrix. From this echelon form the backward

phase produces the reduced row echelon form of the input matrix.3 Since, row-operations do not change the

solution to linear systems, getting to these echelon forms is the goal of the algorithm. For example if we

take A ∈ R6×9 and b ∈ R6×1 and reduce it to,

(5)

26666666664

1 ∗ 0 0 ∗ ∗ 0 ∗ 0 a

0 0 1 0 ∗ ∗ 0 ∗ 0 b

0 0 0 1 ∗ ∗ 0 ∗ 0 c

0 0 0 0 0 0 1 ∗ 0 d

0 0 0 0 0 0 0 0 1 e

0 0 0 0 0 0 0 0 0 f

37777777775
,

where ∗ are in general non-zero elements, then the following simplest linear system whose solution is equiv-

alent to the solution of Ax = b, 4

1x1 + ∗x2 + ∗x5 + ∗x6 + ∗x8 = a

x3 + ∗x5 + ∗x6 + ∗x8 = b

x4 + ∗x5 + ∗x6 + ∗x8 = c

x7 + ∗x8 = d

x9 = e

0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 + 0x7 + 0x8 + 0x9 = f

2This algorithm is also often called Gaussian elimination in honor of its European inventor Carl Friedrich Gauss.

http://en.wikipedia.org/wiki/Gaussian_elimination

3http://www.math.aau.dk/~ottosen/Mat2C/rralg.html
4The following website contains an animation of row-reduction, http://www.sci.wsu.edu/math/faculty/genz/

220v/lessons/kentler/SolveAnimEch/solveAnim1.html . There are more at http://www.sci.wsu.edu/math/

faculty/genz/220v/lessons/kentler/SolveAnimEch/.
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We notice that if f 6= 0 then the final equation is inconsistent and the system has no solution. If f = 0 then

there is a solution to the system but, since we started with more columns than rows, this solution is not

unique. 5 From this we notice that not only is it important to deduce, from row-reduction, the consistency

of each equation one must also compare the total number of variables to the number of pivots or the number

of free variables. This difference determines the uniqueness of the solutions and is an expression of the

rank-nullity theorem.

Since the calculation of the differences,

(1) ∆1 = [number of variables] - [number of pivots]

(2) ∆2 = [number of variables] - [number of free variables]

will be important we record the following definitions, which will allow us to calculate these numbers from

row-reduced matrices. Before we recite this information we take a minute to note the logic these statements

will be used for.

(1) Given some set of vectors we must determine how to make new ones from vectors from the set =⇒
linear combination.

(2) Suppose we make the set of all linear combinations, which in general contains an infinite number of

vectors, we would like a way to specify those vectors necessary for the construction of this spanning

set =⇒ linear independence .

(3) Spanning sets are examples of so-called linear vector spaces and all linearly independent vectors

from this set/space constitutes a basis for this space with dimension equal to the number of

vectors in any basis.

(4) Two vector spaces important in the study of systems involving A are the null space and column

space of A. The dimension of the null space counts the number of free variables and the dimension

of the column space counts the number of pivots =⇒ Rank-Nullity Theorem.

Definition 1. Linear Combination: Let S = {v1, v2, v3, . . . , vk} where vi ∈ Rn for i = 1, 2, 3, . . . , k, k ∈ N,

then we say that x ∈ Rn is a linear combination of the vectors from S if

(6) x = c1v1 + c2v2 + c3v3 + · · · ckvk =

kX
j=1

cjvj ,

where cj ∈ R.

Definition 2. Linear Independence: Let S be as before then we say that S forms a linearly independent set

if the following bidirectional implication holds,

(7)

kX
j=1

cjvj = 0 ⇐⇒ ci = 0, for all i = 1, 2, 3, . . . , k.

Remark 1. Recall that (7) is equivalent to Vc = 0, where V is a matrix whose jth column is vj and c is

a vector whose elements are cj. If we note, without proof, that pivot columns are linearly independent then

the linearly independent vectors from S are the pivot columns from matrix V and that

these columns can be found by the row-reduction applied to V.

Definition 3. Spanning Set: Let S be as before. Then we define the span of S as the set of all linear

combinations of the the vectors from S. That is span{S} is the set of all x defined by (6).

Definition 4. Linear Vector Space: A linear vector space, or just vector space for brevity, is a set of vectors

S, which is also closed under arbitrary linear combinations of the vectors from S.6 This is to say that a

vector space is a the set S along with all linear combinations of the vectors from S. It follows that the span

of any set of vectors is a vector space.

5In other words the system has more variables than equations and from this underdetermined system one would

never expect unique solutions. To have unique results one must have at least as many equations as unknowns. If

there are more equations than unknowns then the system is said to be overdetermined.
6This definition is somewhat imprecise. There are particular algebraic rules, which must hold for the space to be

a vector space. Please consult 7.9 of your text for more detailed information.
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Definition 5. Basis: Given a vector space, say S̃, we say that a basis for this space is the maximum

collection of linearly independent vectors from S̃ or equivalently the minimum collection of vectors needed to

span the space S̃.

Definition 6. Dimension: Given a vector space S̃ and a basis for this space, say BS̃ we say that the

dimension of the space is the number of vectors in this basis. That is, dim(S̃) =dim(BS̃).

Definition 7. Null Space: The null space of a matrix, Nul{A}, is the vector space defined by all solutions

to the homogenous system Ax = 0.

Remark 2. If the system Ax = 0 is consistent with infinitely many solutions then the general solution will

be a linear combination of vectors multiplied by free variables. These vectors form a basis for the null space

and thus the null space has dimension equal to the number of free variables.

Definition 8. Column Space: The column space of a matrix, col{A}, is the set of all linear combinations

of the columns of A.

Remark 3. From remark 1 we have that the pivot columns of a matrix are linearly independent and thus a

basis for the column space of a matrix is its set of pivot columns. From this we conclude that the dimension

of the column space of a matrix, also known as its Rank, is the number of pivots in the matrix.

Theorem 1. Rank-Nullity Theorem: Let A ∈ Rm×n then the following equality holds,

(8) Rank(A) + dim(Nul(A)) = n,

which asserts that the number of pivots plus the number of free variables must be equal to the number of

columns in A.

This summarizes the major concepts from chapter 7. The following statement summarizes this material

for the case where the coefficient matrix is square.

Theorem 2. The invertible matrix theorem: Let A ∈ Rn×n. Then the following statements are equiva-

lent:

(1) A is an invertible matrix. That is A−1 exists

(2) det(A) 6= 0

(3) A is row equivalent to the n× n identity matrix

(4) A has n-pivot positions

(5) The equation Ax = 0 has only the trivial solution

(6) The columns of A form a linearly independent set

(7) The equation Ax=b has a unique solution for each b ∈ Rn

(8) The columns of A span Rn

(9) The columns of A for a basis for Rn

(10) col(A) = Rn

(11) dim{col(A)} = n

(12) rank(A) = n

(13) nul(A) = {0}
(14) dim{nul(A)} = 0


