
MATH348-Advanced Engineering Mathematics Homework: Fourier Series

Integration Review and Introduction to Fourier Series

Text: 11.1-11.2 Lecture Notes : 9 Lecture Slides: N/A

Quote of Homework: Fourier Series - Solutions

And of course Henry the horse dances the waltz!

The Beatles : Being for the Benefit of Mr. Kite! (1967)

1. Integration Review

1.1. Integration by Parts.

∫
x3 cos(5x)dx Integration by parts is common when working with Fourier series and can efficiently be done

through tables. If you have never done this then wikipedia has a good article. The result is,

u dv

x3 cos(5x)

3x2 sin(5x)
5

6x − cos(5x)
25

6 − sin(5x)
125

0 cos(5x)
625∫

x3 cos(5x)dx =
x3 · sin(5x)

5
+

3x2 · cos(5x)

25
− 6x · sin(5x)

125
− 6 · cos(5x)

625
+ c

1.2. Integration by ?

∫
x2 sin(2x3)dx Don’t let the power-term fool you. This integration is done via substitution.∫

x2 sin(2x3)dx =
1

6

∫
sin(u)du, u=2x3

du=6x2

=
1

6
(− cos(u)) + c =

− cos(2x3)

6
+ c

1.3. Tricky IBP or Tricky Algebra.

∫
eax cos(bx)dx and

∫
eax sin(bx)dx Both of these integrals require a cyclic integration by parts

argument, which can be found here. It is easier to avoid the integration by parts altogether. Consider,∫
eaxeibxdx =

∫
e(a+ib)xdx(1)

=
1

a+ bi
e(a+bi)x(2)

= eax
(

a

a2 + b2
− i b

a2 + b2

)
eibx(3)

=
a cos(bx) + b sin(bx)

a2 + b2
eax + i

a sin(bx)− b cos(bx)

a2 + b2
eax,(4)

which implies that

Re

(∫
eaxeibxdx

)
=

∫
eax cos(bx)dx =

a cos(bx) + b sin(bx)

a2 + b2
eax(5)

Im

(∫
eaxeibxdx

)
=

∫
eax sin(bx)dx =

a sin(bx)− b cos(bx)

a2 + b2
eax(6)

1.4. Integration of Delta ‘Functions’ . Justify that

∫ ∞
−∞

δ(x− x0)g(x)dx = g(x0) for some x0 ∈ R

Recall that the working definition of a Dirac delta ‘function’ is,

δ(x− x0) = 0, for all x 6= x0,(7)

such that ∫ x0+ε

x0−ε
δ(x− x0)dx = 1, for all ε > 0.(8)

1

http://en.wikipedia.org/wiki/Integration_by_parts#Tabular_integration_by_parts
http://en.wikipedia.org/wiki/Integration_by_parts#Tabular_integration_by_parts
http://en.wikipedia.org/wiki/Dirac_delta_function
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It is disheartening to know that no function can do this but rest assured that the use of this replacement rule is made rigorous in the theory

of generalized functions or so-called distributions. These functionals where in use long before they were made rigorous and this is what you

need to know,

∫ ∞
−∞

δ(x− x0)g(x)dx =

∫ ∞
−∞

δ(x− x0)g(x0)dx(9)

= g(x0)

∫ ∞
−∞

δ(x− x0)dx(10)

= g(x0).(11)

We think about this rule as a replacement rule, which says that if you integrate function against the delta functional then you evaluate the

function at the point where the delta functional is not zero.

1.5. Integrals of Gaussian Functions. Show that

∫ ∞
−∞

e−x
2

dx =
√
π Show that

∫ ∞
−∞

e−x
2

dx =
√
π

This integral is one of the more important integrals from physics and probability and is the function associated with the so-called ‘bell-

curve.’ We would like to know about the area under its curve but alas we do not know its anti-derivative.1 Consider defining I =

∫ ∞
−∞

e−x
2

dx

then,

I2 =

∫ ∞
−∞

e−x
2

dx

∫ ∞
−∞

e−y
2

dy(12)

=

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)dxdy(13)

=

∫ 2π

0

∫ ∞
0

re−r
2

drdθ(14)

=

∫ 2π

0

∫ ∞
0

e−u

2
dudθ(15)

=

∫ 2π

0

1

2
dθ(16)

= π,(17)

implies that I =
√
π. Though it functionally works, this argument is imprecise. Notice that the domain of integration changes with the

coordinate change from (13)-(14) and consequently so does the geometry. These integrals are improper and should be thought of as definite

integrals whose limits of integrations are themselves limits. So, the thinking is like this, at (13) you are integrating over a square where the

lengths of the sides of the square are undergoing a limiting process, which makes them infinitely long. However, at (14) the geometry is a

circle whose radius is undergoing a limiting process making it infinitely long. Why should the integral over the circle converge to the same

value over the square? Well, they consume all of space but that isn’t a really good reason.

Consider now, bounding the square in Cartesian below and above by a circles and taking the limit as the lengths and radii go to infinity.

In this limit the integration on the circles will give you I = π and as this process is going on the square will be squeezed above and below

by these circles and must naturally converge to the same number. Thank you squeeze theorem.

1.6. Orthogonality. Show that

∫ 2π

0

sin(nx) cos(mx)dx = 0 for all n,m ∈ N

1One could power-expand the integrand and since its Taylor series is absolutely convergent one could exchange integration with the summation and

conduct term-wise integration. However, this approach is not helpful since you will be left with some infinite series, which you will then have to sum.

http://en.wikipedia.org/wiki/Generalized_function
http://en.wikipedia.org/wiki/Generalized_function
http://en.wikipedia.org/wiki/Distribution_(mathematics) 
http://en.wikipedia.org/wiki/Gaussian_integral
http://en.wikipedia.org/wiki/Squeeze_theorem
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First, this can be done with the trigonometric identity sin(nx) cos(mx) = 1
2

[sin(nx−mx) + sin(nx−mx)]. We will use the following

identities instead, 2 cos(x) = eix + e−ix, 2i sin(x) = eix − e−ix and e±inπ = (−1)n, where n is an integer. Now we have,∫ 2π

0

sin(nx) cos(mx)dx =

∫ 2π

0

[
einx − e−inx

2i

] [
eimx + e−imx

2

]
dx(18)

=

∫ π

−π

[
ein(u+π) − e−in(u+π)

2i

] [
eim(u+π) + e−im(u+π)

2

]
du(19)

=

∫ π

−π
(−1)n(−1)n

[
einu − e−inu

2i

] [
eimu + e−imu

2

]
du(20)

=

∫ π

−π
sin(nu) cos(mu)du(21)

= 0,(22)

since the integrand is odd and the domain of integration is (−π, π)

1.7. More Orthogonality. Show that

∫ b

a

ei
nπ
L
xe−i

mπ
L
xdx = 2Lδmn where L = b−a

2
and for all n,m ∈ Z.

This integral is important for generalizing Fourier series to any finite domain of R. First the integral,∫ b

a

ei
nπ
L
xe−i

mπ
L
xdx =

∫ b

a

e
i
πL

(n−m)xdx(23)

= ea
∫ b−a

0

e
iπ
L

(n−m)udu(24)

= ea
L

iπ(n−m)
e
iπ
L

(n−m)u
∣∣∣b−a
0

(25)

= ea
L

iπ(n−m)

(
e
iπ
L

(n−m)(b−a) − 1
)

(26)

= ea
L

iπ(n−m)

(
e2πi(n−m) − 1

)
(27)

= 0, for n 6= m,(28)

provides orthogonality. While noting for n = m, ∫ b

a

ei
nπ
L
xe−i

mπ
L
xdx =

∫ b

a

e0dx(29)

= b− a(30)

= 2L,(31)

provides the square of the vectors length. This result indicates that orthogonality is maintained for functions that are defined off of the

symmetric interval (−π, π), which are 2L-periodic.

2. Introduction to Fourier Series

2.1. Wikipedia. Go to http://en.wikipedia.org/wiki/Fourier_series and read the introductory material on Fourier Series and de-

scribe in your own words the purpose and application of Fourier Series.

A Fourier series is a method of decomposing periodic functions in terms of sines and cosines with discrete frequencies. Typically, a

Fourier series is used to understand a function’s frequency spectrum and because of this, appears heavily in signal analysis. However, as a

tool, it is very powerful and appears in many applications having to do with PDE’s. This is due to the fact that every reasonable function

defined on a finite spatial domain has access to a Fourier decomposition. Since most physical problems modelled by PDE occur on a finite

spatial domains Fourier series appear quite naturally when finding solutions through separation of variables.

2.2. Graphing. Using the Java Applet found at http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Fourier/fourier.

html, use the applet to graph a truncated Fourier Series approximating the saw-tooth function. What occurs at the points jump-

discontinuity?

Near the points of discontinuity a truncated Fourier series will display a ringing/oscillations, or what is called Gibb’s phenomenon, which

is an consequence of a linear combination of continuous functions trying to approximate a jump discontinuity. This error can be minimized

through the use of low-pass filters or wavelet transforms using the so-called Harr basis. If the Fourier series is not truncated then at the

point of discontinuity, the Fourier series will average the left-hand and right-hand limits of the function and Gibb’s phenomenon will stop.

http://en.wikipedia.org/wiki/Fourier_series
http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Fourier/fourier.html
http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Fourier/fourier.html
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2.3. Truncated Fourier Series. Read, as much as you can, of http://en.wikipedia.org/wiki/Gibbs_phenomenon. The sum of a finite,

or infinite amount of periodic functions is periodic. Is this always true for both finite and infinite sums of continuous functions? Can you

think of a counterexample? 2

The sum of periodic functions is always periodic. However, the infinite sum of continuous functions may be discontinuous. The square-

wave is an example of Fourier series, which is the infinite sum of continuous functions, that has jump discontinuities.

3. Fourier Series : Even

Let f(x) = x2 for x ∈ (−π, π) be such that f(x+ 2π) = f(x).

3.1. Graphing. Sketch f on (−2π, 2π).

3.2. Symmetry. Is the function even, odd or neither?

The function is even. This can be seen by the graph above, which is symmetric about the y-axis. Also, f(−x) = (−x)2 = x2 = f(x).

3.3. Integrations. Determine the Fourier coefficients a0, an, bn of f .

a0 =
1

2π

∫ π

−π
x2dx =

1

π

∫ π

−π
x2dx

=
x3

3π

∣∣∣∣π
0

=
π2

3
,

an =
1

π

∫ π

−π
x2 cos(nx)dx =

2

π

∫ π

0

x2 cos(nx)dx

=
2

π

[
x2

n
sin(nx) +

2x

n2
cos(nx)− 2

n3
sin(nx)

]π
0

=
2

π

[
2π

n2
cos(nπ)

]
=

4(−1)n

n2
,

bn = 0,

f(x) =
π2

3
+

∞∑
n=1

4(−1)n

n2
cos(nx)

a0 =
π2

3
, an =

4(−1)n

n2
, bn = 0

2These questions are meant to lead you. Remembering that sine and cosine are examples of continuous periodic functions, you should be thinking

about the following string of thoughts.

(1) Fourier series represent an ‘arbitrary’ periodic function in terms of known periodic functions.

(2) Increasing the number of terms in a Fourier series creates better and better sinusoidal wave-form fits of the function f and in the limit of

infinitely many terms this fit is exact ‘almost-everywhere’.

(3) Hopefully by the time you do this problem we would have mentioned in class that the Fourier series representation of a function converges in

the sense of averages and that since jump-discontinuities are integrable-discontinuities the Fourier series would average the right and left hand

limits of the function at the point of discontinuity. This will happen indifferent to the actual value of the function at the point of discontinuity.

Thus the Fourier series may actually differ from its function at the boundaries of its periodic-domains! In this way we take = to mean equality

almost everywhere (http://en.wikipedia.org/wiki/Almost_everywhere).

So, we have that the sawtooth example from class and the square-wave example online are examples where the infinite sum of continuous periodic

functions converges to a periodic function with jump-discontinuities.

http://en.wikipedia.org/wiki/Gibbs_phenomenon
http://en.wikipedia.org/wiki/Almost_everywhere
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3.4. Truncation. Using http://www.tutor-homework.com/grapher.html, or any other graphing tool, graph the first five terms of your

Fourier Series Representation of f .

4. Fourier Series : Oddish

Let f(x) = x+ α for x ∈ (−π, π) and α ∈ R be such that f(x+ 2π) = f(x).

4.1. Graphing. Sketch f on (−2π, 2π).

4.2. Symmetry. Is the function even, odd or neither?

If α = 0 then the function is odd. However, if α 6= 0 then the function is the sum of an even function with an odd function and is,

consequently, neither even nor odd.

4.3. Integrations. Determine the Fourier coefficients a0, an, bn of f .

We have that the Fourier Series of f(x) should be the addition of the Fourier series for f1(x) = x and the Fourier Series for f2(x) = α.

We have from class that

f1(x) =

∞∑
n=1

2(−1)n+1

n
sin(nx)

Formulas from Kreysig p. 480.

For f2(x) :

a0 =
1

2π

∫ π

−π
αdx =

αx

2π

∣∣∣π
−π

= α

an =
1

π

∫ π

−π
α cos(nx)dx =

α

π
sin(nx)

∣∣∣π
−π

= 0

bn =
1

π

∫ π

−π
α sin(nx)dx =

α

π
cos(nx)

∣∣∣π
−π

= 0

Thus, for f(x) = x+ α

f(x) = α+

∞∑
n=1

2(−1)n+1

n
sin(nx)

a0 = α, an = 0, bn =
2(−1)n+1

n

http://www.tutor-homework.com/grapher.html
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4.4. Truncation. Using http://www.tutor-homework.com/grapher.html, or any other graphing tool, graph the first five terms of your

Fourier Series Representation of f assuming that α = 1.

5. Fourier Series : Nonstandard Domain

Let f(x) = x2 for x ∈ (0, 2π) be such that f(x+ 2π) = f(x).

5.1. Graphing. Sketch f on (−4π, 4π).

5.2. Symmetry. Is the function even, odd or neither?

Don’t let the quadratic function fool you. This function is neither even nor odd as can be seen by the previous graph.

5.3. Integrations. Determine the Fourier coefficients a0, an, bn of f .

This problem highlights an important property of Fourier series. The idea is this. If you want to create a Fourier series for the graph

that is given and you want to use the standard integrations on (−π, π) then you must use the piecewise definition of f given by,

f(x) =

{
(x+ 2π)2, −π < x ≤ 0

x2, 0 < x < π
.(32)

This is the same as the graph above and defined on (−π, π) so that it is ready for use with the standard formulae. However, this calculation

will be cumbersome. Instead note the following logic,

(1) A Fourier series is the linear combination of sine/cosine basis vectors that also obey an orthogonality condition.

(2) From this orthogonality condition the coefficients in the linear combination can be found in terms of integrals.

(3) The orthogonality condition was found with the inner-product < f, g >=
∫ π
−π f(x)g(x)dx.

(4) The integral defined in 1.7 of this homework obeys all the rules of an inner-product and shows that the imaginary-exponential

functions are orthogonal on any 2L−domain.

(5) Thus the sine/cosine functions are orthogonal on any 2L−domain. Consequently, the Fourier coefficients can be re-derived for any

2L−domain.

In this case the following integrals are taken on the principle domain of the periodic function and b/c of this the integrations are simpler.

http://www.tutor-homework.com/grapher.html
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a0 =
1

2π

∫ 2π

0

x2dx =
x3

6π

∣∣∣∣2π
0

=
4π2

3

an =
1

π

∫ 2π

0

x2 cos(nx)dx =

=
1

π

[
x2

n
sin(nx) +

2x

n2
cos(nx)− 2

n3
sin(nx)

]2π
0

=
1

π

[
4π

n2

]
=

4

n2

bn =
1

π

∫ 2π

0

x2 sin(nx)dx

=
1

π

[
−x2

n
cos(nx) +

2x

n2
sin(nx) +

2

n3
cos(nx)

]2π
0

=
1

π

[
−4π2

n
+

2

n3
− 2

n3

]
=
−4π

n

f(x) =
4π2

3
+

∞∑
n=1

[
4

n2
cos(nx)− 4π

n
sin(nx)

]

a0 =
4π2

3
an =

4

n2
bn =

−4π

n

5.4. Truncation. Using http://www.tutor-homework.com/grapher.html, or any other graphing tool, graph the first five terms of your

Fourier Series Representation of f .

Key Point: The role of the Fourier coefficients is to take in periodic data, say f(x), on some domain say, (0, 2π). The role of the Fourier

series is to then take the data supplied by the coefficients and repeat this graph to the right and to the left of the principle domain. nice

http://www.tutor-homework.com/grapher.html
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