
Reading assignment

Schroeder, section 2.3.



Recap of lecture 5

• Odds are everything in statistical mechanics.
• Number of distinct sequences of n integers from 1, . . . , N :

Nn (N possibilities for each.)

2
?? ? ? . . . 1 2 3 . . . N

1 2 3 . . . N

1 2 3 . . . N
. . .

...

1 3 n

• Number of distinct sequences with no repetition within:
N(N − 1) · · · (N − n + 1) = N !

(N−n)! . Implies N !
permutations of N objects.

2
?? ? ? 1 2 3 . . . N

. . .

. . .
1 3 n



Recap of lecture 5

• Number of ways to choose n objects from a pool of N :

N !

n!(N − n)!
=

(
N

n

)
(binomial coefficient) .

N ! permutations︷ ︸︸ ︷
1 2 3 . . . n︸ ︷︷ ︸
n! permutations

n+1 n+2 . . . N︸ ︷︷ ︸
(N − n)! permutations



Entropy

Constituent states, microstates, and macrostates

In statistical mechanics we’ll consider systems to be composed
of some constituents, perhaps atoms, molecules, or whatever.
This implies some degree of independence of the constituents.

Each constituent will generally be supposed to exist in any of a
number of “single-particle” (constituent) states independently
of the others, with the collection of single-particle states of all
constituents constituting a microstate of the “many-particle”
system. The complete set of all possible microstates is called
the microstate space.

The system as a whole will have certain macroscopic properties
that characterize its macrostate. Generally, many microstates
will have the same macroscopic properties, and we will use that
fact in predicting the probability of each of the macrostates.
Knowledge of the probabilities of the macrostates is our key
goal.



Entropy

Example

To illustrate these ideas, consider a two-constituent system
consisting of a cubic (6-sided) and a tetrahedral (4-sided) die.
Each has sides numbered from 1 to the number of its sides.

The “single-particle” (single-die) states of either die can be
characterized by the number facing up.

Each microstate of the “many-particle” (two-die) system can be
characterized by the ordered pair of numbers characterizing the
single-particle states.

We’ll take the (only) macroscopic property of the two-die
system to be the sum of the numbers on the dice, so all
microstates having the same sum will be lumped together in the
same macrostate.
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Example

Here is a complete table of the possible microstates:

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10

And here’s a summary of the number Ω of microstates
belonging to each macrostate (i.e., having each sum):

Sum: 2 3 4 5 6 7 8 9 10
Ω: 1 2 3 4 4 4 3 2 1

This shows the distribution of the 6× 4 = 24 microstates among
the 9 macrostates.
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Probability

A useful definition for us is this: Imagine generating a long
sequence of measurements of the state of some system. For each
result, denoted x, determine the ratio

Number of occurrences of x

Total number of measurements
.

If that ratio converges to a well-defined value in the limit of an
infinite number of measurements, that value is called the
probability of occurrence P (x).
Probabilities satisfy a couple of important properties:
• If two events are mutually exclusive, the probability of

either occurring is the sum of the probabilities of each.
• If two events are independent, that is, the probability of

each does not depend on the occurrence of the other, the
probability of both occurring is the product of the
probabilities of each.
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Probability distributions

The set of probabilities for a complete set of (i.e., all possible)
events is called a probability distribution, and to qualify as such
it is necessary that a set of numbers P (x) satisfy

0 ≤ P (x) ≤ 1

and ∑
x

P (x) = 1 ,

the latter being the normalization condition. Here x indexes the
events of interest, such as occurrences of the microstates or of
the macrostates.
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Example

In the previous example, to calculate the probability of each
macrostate of the two dice, we need the probabilities of each of
the microstates. Those, in turn, depend on the probabilities of
each of the single-die (constituent) states.

For fair dice we assume that each single-die state is equally
probable, so each of the 24 two-die microstates is equally
probable. Thus, the probability of each macrostate is simply
the number Ω of microstates belonging to that macrostate
divided by the total number of microstates. That is, we just
normalize the probability distribution by dividing the frequency
of occurrence of each macrostate by the total number of
microstates. This assures that

∑
x

P (x) = 1.
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Example

For example, the probability of occurrence of the macrostate of
the dice having the sum of 8 is Ω(8)/24 = 3/24 = 1/8.

Sum: 2 3 4 5 6 7 8 9 10
Ω: 1 2 3 4 4 4 3 2 1
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Homework

HW Problem
Throw three fair 6-sided dice. What is the probability that at
least one will show 6? Do this calculation in two ways:
a. Make use of the probability that a given die will show 6.
b. Make use of the probability that all three dice will not

show 6.
Your answers should agree.
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Homework

HW Problem

a. Find the probability of n heads in a simultaneous toss of N
coins.

b. Which value of n is most probable.
c. Now consider the probability P (x) of the fraction of heads

x = n/N . Let Pmax denote the probability of the most
probable value of n for any given N . For N = 6, 40, and
200 plot (all on the same graph) the ratio P (x)/Pmax, for x
ranging from 0 to 1. What can you conclude from
comparison of the three plots?
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Homework

HW Problem
A dinner is to be held at Hogwarts, and the following 13
students are to sit at the same table, a round table at which 15
chairs are placed:

Harry (Potter) Hermione (Granger) Ron (Weasley)
Ginny (Weasley) Draco (Malfoy) Vincent (Crabbe)
Gregory (Goyle) Theodore (Nott) Orla (Quirke)
Luna (Lovegood) Michael (Corner) Ernie (Macmillan)
Oliver (Wood)

Two seats will remain empty. What is the probability that the
students will sit in an arrangement such that their (first) initials
spell out the word “Voldemort” clockwise as seen from above?
Treat all arrangements that are identical apart from a rotation
as equivalent.



Entropy

Our second toy system—the two-state paramagnet

The constituents are spin-1/2 particles that interact at most
weakly with each other. Each spin has two possible orientations
with respect to an external magnetic field (recall the
Stern-Gerlach experiment). These two orientations differ in
energy, E = −µ · B, and at finite temperature some of the spins
are in the higher-energy state.

The single-particle states are the two orientations of the
magnetic moment. The microstates of the system are
characterized by enumeration of the sequence of states of the
individual moments. And the macrostates are characterized by
the average number of moments in the up direction.

The number of microstates corresponding to each macrostate is

Ω(N↑) =

(
N

N↑

)
=

N !

N↑!N↓!
.
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Our third toy system: the Einstein model

Recall that the vibrations of a crystal lattice can be described
in terms of (Fourier) superposition of harmonic waves, each of
which corresponds to a quantum harmonic oscillator. In reality,
the frequency vs wavevector relations for the normal modes of
vibration of a crystal are quite complicated:
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Our third toy system: the Einstein model

But Einstein’s idea was to treat the simplest possible quantized
system, a collection of harmonic oscillators, all having the same
frequency. This captures the effect of quantization on the
thermodynamics without the distraction of real dispersion
relations:

Einstein model
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The states of the Einstein crystal

Since the constituents are all identical oscillators, the
constituent (single-particle) states are those of a quantized
harmonic oscillator: (

n +
1

2

)
}ω ,

and they are characterized by the quantum number n, which
represents the number of quanta of excitation of the oscillator.
The microstates of the entire system are then characterized by
the entire set of quantum numbers of the constituents {ni}. For
example, if the system has 4 oscillators, one of its microstates
has

n1 = 2 n2 = 0 n3 = 1 n4 = 3 .
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The states of the Einstein crystal

The total energy of a particular microstate, let’s call it j, is just
the sum of the energies of the constituents:

Ej =
N∑

i=1

(
n

(j)
i +

1

2

)
}ω =

N

2
}ω +

(
N∑

i=1

n
(j)
i

)
}ω .

The macrostates will be characterized by the total energy. That
is, all microstates having the same total energy belong to the
same macrostate. Clearly, the only number needed to
characterize that value is the sum of the quantum numbers of
the constituents:

q =

(
N∑

i=1

n
(j)
i

)
,

the total number of quanta of excitation in the system.
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The states of the Einstein crystal

To determine the probability of macrostate q, we need to find
the number Ω of microstates of the N constituents having a
total of q quanta. That is, we need to find the number of ways
we can partition the number q into N pieces.
An easy way to do this is to think of q dots in a row, with
N − 1 dividers separating the dots into N groups:

w w︸ ︷︷ ︸
n1

︸︷︷︸
n2

w︸︷︷︸
n3

w w w︸ ︷︷ ︸
n4︸ ︷︷ ︸

N − 1 + q objects

The number of ways of arranging the dots and dividers giving
unique sequences of the ni gives the number of microstates
(note that the order of the ni does matter here—the oscillators
are considered distinguishable).
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The states of the Einstein crystal

w w︸ ︷︷ ︸
n1

︸︷︷︸
n2

w︸︷︷︸
n3

w w w︸ ︷︷ ︸
n4︸ ︷︷ ︸

N − 1 + q objects

The result is the number of permutations of the N − 1 + q dots
and dividers divided by the number of permutations of the q
dots (they are indistinguishable) and the number of
permutations of the N − 1 dividers alone (they are also
indistinguishable.)

Number of microstates in macrostate q =

(N − 1 + q)!

q! (N − 1)!
=

(
N − 1 + q

q

)
.


	Entropy
	Statistical behavior of large systems
	Einstein model of a solid


