1. Using induction, prove that for each even natural number n,

$$
\left(1-\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1-\frac{1}{4}\right) \cdots\left(1-\frac{(-1)^{n}}{n}\right)=\frac{1}{2}
$$

2. Let $f: X \rightarrow Y$, and let $\hat{F}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ be defined by

$$
\hat{F}(B)=\{x \in X \mid f(x) \in B\} .
$$

Prove that \hat{F} is one to one if and only if f maps onto Y.
(Note: $\mathcal{P}(X)$ is the power set of X)
3. For each of the following diophantine equations, either show that no solutions exist or find a solution.
(a) $17 x+13 y=100$
(b) $21 x+14 y=147$
4. Consider the identity: For $0 \leq m \leq k \leq n$,

$$
\binom{n}{k}\binom{k}{m}=\binom{n}{m}\binom{n-m}{k-m}
$$

Provide 2 proofs of this identity:
(a) Give a direct proof using the definition of combinations.
(b) Give a combinatorial proof
5. Provide a $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ version of your resume (or curriculum vitae). It should include contact information, employment history and educational history (at a minimum). Please keep the resume to a single page.

