
Physics 350 – Undergraduate Classical Mechanics

Numerical Homework III, due Friday, October 21 at 11:00 a.m.

All solutions must be in hard-copy form; no electronic copies will be accepted.

All solutions must be typed.

Now that we know how to use Lagrangian mechanics to formulate differential equations

for complicated situations, let’s apply it to one of the classical systems that demonstrates

chaos: the double pendulum.

Here is the problem. You have a double pendulum just like you solved for the

Lagrangian in the last analytical homework (Thornton problem 7.7). Set up a numeric

solver that can take the masses and lengths of the arms of the pendulum as well as initial

conditions (, , d/dt , d/dt). For this assignment, we’ll take the length of both arms of

the pendulum to 0.25m, and the masses of both bobs on the end of the pendulum arms to

be 3kg. Use g=9.8m/s
2
.

1) You can either solve for the second time derivative of the angles using your

analytic homework, or you can use Mathematica to rederive the Lagrange

equations of motion and solve for them in terms of the generalized coordinates

and velocities. Get expressions of these that you will use to give you the

generalized accelerations at each time step.

2) Make a module that will calculate the two angles as functions of times. I would

make the inputs for the modules include the maximum time, the time step, and the

initial angles and angular velocities. It’s up to you if you want to include more

than that. Note that while I was doing this, I found that you can speed up your

module executions by more than a factor of 10 by using the Compile function

offered in Mathematica. I would definitely recommend using this, especially if

you are going to do the extra credit part of the assignment.

3) Test your results by seeing how much energy conservation is violated for given

time steps. Also animate the motion of your pendulum. Outside of looking really

cool, you can typically tell if something isn’t right by visualizing the motion.

Between the energy conservation and the visualization, you should be able to hunt

down errors. Here is some code that you can use to plot and animate your

pendulum:

where I had defined pos1 and pos2 earlier in the code with {x coord as a function

of theta and phi, y coord as a function of theta and phi}

4) Stuff we’ll grade you on:

a. Error in energy using a dt of 0.001 seconds and maximum time of 10

seconds:

i. Plot the % error in energy as a function of time for the following

initial conditions: = 10 deg, =20 deg, d/dt = 0, d/dt = 0

ii. Print out the % error in energy density for the following cases:

1. = 10 deg, =20 deg, d/dt = 0, d/dt = 0 (~0.5%)

2. = 30 deg, =60 deg, d/dt = 0, d/dt = 0 (~5%)

3. = 90 deg, =180 deg, d/dt = 0, d/dt = 0 (~15%)

4. = 0 deg, =0 deg, d/dt =0, d/dt = 50 deg/s (~0.08%)

5. = 0 deg, =0 deg, d/dt =0, d/dt = 100 deg/s (~0.3%)

6. = 0 deg, =0 deg, d/dt =0, d/dt = 500 deg/s (~8%)

b. Run animations of your pendulum for the cases 1 and 3 from part (a).

Make a snapshot of the animation from 3 as proof (the animation updates

as you run stuff after it.

c. Do a convergence study. One way to do this is to plot –log(dt) vs the

change in final angle going from one dt to the next. Change dt from 0.01

to 0.005 to 0.001 to 0.0005 to 0.0001 and plot –log(dt) on the horizontal

axis and log(change in final going from the last dt to the current

one/current final ) on the vertical axis. You should get something that

gets smaller and smaller as –log(dt) gets larger (dt gets smaller). For this,

to make it solve faster, make your maximum time only 1 second.

d. Plot as a function of time for the following cases using a maximum time

of 10 seconds and a dt of 0.001 seconds. They should all be plotted on the

same axis, so one graph with four curves on it.

i. = 20 deg, =40 deg, d/dt = 0, d/dt = 0

ii. = 20 deg, =40.01 deg, d/dt = 0, d/dt = 0

iii. = 20 deg, =40.02 deg, d/dt = 0, d/dt = 0

iv. = 20 deg, =40.03 deg, d/dt = 0, d/dt = 0

e. Plot as a function of time for the following cases using a maximum time

of 10 seconds and a dt of 0.001 seconds. They should all be plotted on the

same axis, so one graph with four curves on it.

i. = 90 deg, =180 deg, d/dt = 0, d/dt = 0

ii. = 90 deg, =180.01 deg, d/dt = 0, d/dt = 0

iii. = 90 deg, =180.02 deg, d/dt = 0, d/dt = 0

iv. = 90 deg, =180.03 deg, d/dt = 0, d/dt = 0

f. Extra credit: This could take all night to run depending on how you

program it, so don’t plan on doing this at the last minute. I want you to

plot the final using the maximum time of 10 seconds and a dt of 0.001

seconds. Do this as a function of starting  (final angle will go on the

vertical axis and initial will go on the horizontal axis of the plot for this).

Make all the initial angular velocities zero, and set the initial  to twice the

initial . Here’s how to make the plot. Start with the initial  The final

will obviously be 0. Now perturb it by 0.001 degrees. So = 0.001 deg,

=0.002 deg. Do this 20 times (keep adding on 0.001 each time). Plot each

point (if) on the graph. You just did a stability study for those initial

conditions. Now do that for i ranging from 0 to 90 degrees keeping i

equal to twice i, and the velocities zero. I would change i in steps of 5

degrees. Do 20 perturbations each of 0.001degrees from the previous one.

Plot all these points, and comment on what you see.

