Homework \#3 Solutions

1. Using $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ construct the matrix,

$$
V=\left[\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right]=\left[\begin{array}{ccc}
1 & -5 & 1 \\
-1 & 7 & 1 \\
-3 & 8 & h
\end{array}\right]
$$

The columns of V are linearly independent if and only if $V \vec{x}=\overrightarrow{0}$ has only the trivial solution. Thus,

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & -5 & 1 & 0 \\
-1 & 7 & 1 & 0 \\
-3 & 8 & h & 0
\end{array}\right] \sim_{R 2=R 1+R 2}^{R 3=3 R 3+R 1}\left[\begin{array}{ccc|c}
1 & -5 & 1 & 0 \\
0 & 2 & 2 & 0 \\
0 & -7 & 3+h & 0
\end{array}\right] \sim^{R 3=2 R 3+7 R 2} } \\
\sim & {\left[\begin{array}{ccc|c}
1 & -5 & 1 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 2 h+20 & 0
\end{array}\right] }
\end{aligned}
$$

shows that $V \vec{x}=\overrightarrow{0}$ has nontrivial solutions for $2 h+20=0 \Leftrightarrow h=-10$. Hence, if $h=-10$ then $V \vec{x}=\overrightarrow{0}$ has nontrivial solutions and if $V \vec{x}=\overrightarrow{0}$ has nontrivial solutions then the columns of V are linearly dependent.
2. Let $A=\left[\begin{array}{ccc}-8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4\end{array}\right], \vec{w}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$
a. If $\vec{w} \in \operatorname{Col} A$ then $\vec{w} \in \operatorname{span}\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$. Check by row reduction

$$
\begin{aligned}
{\left[\begin{array}{cc}
A & \vec{w}
\end{array}\right] } & =\left[\begin{array}{ccc|c}
-8 & -2 & -9 & 2 \\
6 & 4 & 8 & 1 \\
4 & 0 & 4 & -2
\end{array}\right] \sim\left[\begin{array}{ccc|c}
-8 & -2 & -9 & 2 \\
0 & 20 & 10 & 20 \\
0 & -2 & -1 & -2
\end{array}\right] \sim \\
& \sim\left[\begin{array}{ccc|c}
-8 & -2 & -9 & 2 \\
0 & 20 & 10 & 20 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \Rightarrow
\end{aligned}
$$

Thus, there exists x_{1}, x_{2}, x_{3} such that $x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+x_{3} \vec{a}_{3}=\vec{w}$ and $\vec{w} \in \operatorname{Col} A$. b.

$$
A \vec{w}=\left[\begin{array}{ccc}
-8 & -2 & -9 \\
6 & 4 & 8 \\
4 & 0 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

thus $\vec{w} \in N u l A$
3.

$$
A=\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & -5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 9 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
0 & 0 & 3 & -1 & 1 \\
0 & 0 & -3 & 1 & -1 \\
0 & 0 & 9 & -2 & 6
\end{array}\right] \sim
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
0 & 0 & 3 & -1 & 1 \\
0 & 0 & -3 & 1 & -1 \\
0 & 0 & 9 & -2 & 6
\end{array}\right] \sim\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
0 & 0 & 13 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 3
\end{array}\right] \sim \\
& \sim\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
0 & 0 & 3 & -1 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=B
\end{aligned}
$$

a. $B \Rightarrow A \vec{x}=0$ has the general solution set.

$$
\begin{aligned}
x_{4} & =-3 x_{5} \\
x_{3} & =\left(x_{4}-x_{5}\right) / 3=\left(-3 x_{5}-x_{5}\right) / 3=\frac{-4}{3} x_{5} \\
x_{1} & =\frac{1}{2}\left(3 x_{2}-6 x_{3}-2 x_{4}-5 x_{5}\right)=\frac{1}{2}\left(3 x_{2}-6\left(-4 x_{5}\right)-2\left(-3 x_{5}\right)-5 x_{5}\right)= \\
& =\frac{1}{2}\left(3 x_{2}+8 x_{5}+6 x_{5}-5 x_{5}\right)=\frac{3}{2} x_{2}+\frac{9}{2} x_{5} \\
x_{2} & =\text { free } \\
x_{5} & =\text { free } \\
& \Rightarrow \vec{x}=x_{2}\left[\begin{array}{c}
3 / 2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-9 / 2 \\
0 \\
-4 / 3-3 \\
1
\end{array}\right] \quad x_{2}, x_{5} \in \Re
\end{aligned}
$$

Thus the basis for NulA is

$$
B_{\text {null }}=\left\{\left[\begin{array}{c}
3 / 2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-9 / 2 \\
0 \\
-4 / 3 \\
-3 \\
1
\end{array}\right]\right\}
$$

and $\operatorname{dim}(N u l A)=\operatorname{dim} B_{\text {null }}=2$
b. $B \Rightarrow$ that the basis for the column space of A is the pivot columns $\vec{a}_{1}, \vec{a}_{3}, \vec{a}_{4}$ of A

$$
B_{C o l A}=\left\{\left[\begin{array}{c}
2 \\
-2 \\
4 \\
-2
\end{array}\right],\left[\begin{array}{c}
6 \\
-3 \\
7 \\
3
\end{array}\right],\left[\begin{array}{c}
2 \\
-3 \\
5 \\
-4
\end{array}\right]\right\}
$$

and $\operatorname{dim}(\operatorname{Col} A)=\operatorname{dim} B_{C o l A}=3$
c. $B \Rightarrow$ the basis for RowA is given as

$$
B_{\text {Row } A}=\left\{\begin{array}{c}
{[2,-3,6,2,5]} \\
{[0,0,3,-1,1]} \\
{[0,0,0,1,3]}
\end{array}\right\}
$$

$\operatorname{dim}(\operatorname{Row} A)=\operatorname{dim} B_{\text {Row } A}=3$
4.
a) There are 3 vectors in $V=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$
b) There are infinitely many vectors in spanV. Each is of the form $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}$ where $c_{1}, c_{2}, c_{3} \in \Re$
c) If $\vec{w} \in \operatorname{span} V$ then $\vec{w}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}$ which is the same as asking if

$$
V \vec{c}=\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 2 \\
-1 & 3 & 6
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]=\vec{w}
$$

has a solution.

$$
[V \mid \vec{w}]=\left[\begin{array}{ccc|c}
1 & 2 & 4 & 3 \\
0 & 1 & 2 & 1 \\
-1 & 3 & 6 & 2
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 2 & 4 & 3 \\
0 & 1 & 2 & 1 \\
0 & 5 & 10 & 5
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 2 & 4 & 3 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since there are no inconsistent rows there exists a solution. Since there is a solution we can conclude that $\vec{w} \in \operatorname{span} V$
5.
a.

$$
\begin{aligned}
y_{1}(t) & =\cos (w t) \Rightarrow y_{1}^{\prime \prime}(t)=-w^{2} \cos (w t) \\
y_{2}(t) & =\sin (w t) \Rightarrow y_{2}^{\prime \prime}(t)=-w^{2} \sin (w t) \\
& \Rightarrow m y_{1}^{\prime \prime}+k y_{1}=-m w^{2} \cos (w t)+k \cdot \cos (w t) \\
& =\cos (w t)\left(-m w^{2}+k\right)=\cos (w t)(-k+k)=0
\end{aligned}
$$

and

$$
m y_{2}^{\prime \prime}+k y_{2}=\sin (w t)\left(-m w^{2}+k\right)=0
$$

b. Let $y \in \operatorname{span}\left\{y_{1}, y_{2}\right\}$ then $y(t)=c_{1} \cos (w t)+c_{3} \sin (w t)$ and

$$
m y^{\prime \prime}+k y=c_{1} \cos (w t)\left(-w^{2} m+k\right)+c_{2} \sin (w t)\left(-w^{2} m+k\right)
$$

thus a function in $\operatorname{span}\left\{y_{1}, y_{2}\right\}$ are solutions

