
MATH332-Linear Algebra Homework Four Solutions

Matrix Inversion, Decomposition and Determinants

Text: 2.2-2.5, 3.1-3.3 Section Overviews: 2.2-2.5, 3.1-3.3

Quote of Homework Four Solutions

And my tears in league with the wires and energy and my machine.

Underworld : Cowgirl (1994)

1. Matrix Inversion

Given,

A =

264 3 6 7

0 2 1

2 3 4

375 .
1.1. Matrix Inverse: Take One. Find A−1 using the Gauss-Jordan method.1

When asked to calculate an inverse matrix this is the algorithm to use. It is simpler and less computationally intensive than other methods

and is roughly what a computational device does when asked to find an inverse matrix.264 3 6 7 1 0 0

0 2 1 0 1 0

2 3 4 0 0 1

375 R1→ R1− 3R2

∼
R3→ 2R1− 3R3

264 3 0 4 1 −3 0

0 2 1 0 1 0

0 3 2 2 0 −3

375 ∼
2R3− 3R2

∼

264 3 0 4 1 −3 0

0 2 1 0 1 0

0 0 1 4 −3 −6

375 R1→ R1− 4R3

∼
R2→ R2−R3

264 3 0 0 −15 9 24

0 2 0 −4 4 6

0 0 1 4 −3 −6

375 R1→ R1/3

∼
R2→ R2/2

∼

264 1 0 0 −5 3 8

0 1 0 −2 2 3

0 0 1 4 −3 −6

375 =⇒ A−1 =

264 −5 3 8

−2 2 3

4 −3 −6

375
1.2. Matrix Inverse: Take Two. Find A−1 using the cofactor representation. 2

There are, of course, other ways to find A−1. The following method uses determinants and provides a general representation of an inverse

matrix, if it exists. First we must find det(A). Using the cofactor expansion of the determinant we have,

det(A) = 3 det

 
2 1

3 4

!
− 0 · det

 
6 7

3 4

!
+ 2 det

 
6 7

2 1

!
= 3(5)− 0(3) + 2(−8) = 15− 16 = −1

Using the cofactor formula we have,

A−1 =
1

det(A)

264 c11 c21 c31

c12 c22 c32

c13 c23 c33

375 =
1

−1

264 5 −3 −8

2 −2 −3

−4 3 6

375 =

264 −5 3 8

−2 2 3

4 −3 −6

375 ,
where cij = (−1)i+j det(Aij). Since, this method requires the use of determinants it is computationally intensive, but does highlight the

connection between det(A) = 0 and non-invertibility. A typical use of this method is to study how elements of A−1 changes with changes

to A.

1The Gauss-Jordan method is another name for row-reduction. For an example see page 124 of the text.
2Though row-reduction is more efficient, it is sometimes that case that the whole inverse isn’t needed. If particular entries of the inverse matrix are

needed then one can use the general inversion formula given by theorem 8 on page 203, which consists of a matrix populated by cofactors.
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1.3. Check Step. Verify that this inverse matrix is correct.

It is easy to verify that we have found the correct matrix inverse of A. We have found A−1 using two different methods and gotten the

same answer but if we are still worried then we conduct the following matrix multiplication AA−1 = I. Doing so gives,

AA−1 =

264 3 6 7

0 2 1

2 3 4

375
264 −5 3 8

−2 2 3

4 −3 −6

375 =

264 1 0 0

0 1 0

0 0 1

375 = I,

which implies that A−1 is the inverse of A.

1.4. Solutions to Linear Systems. Using A−1 find the unique solution to Ax = b = [b1 b2 b3]t.

Since there is an inverse matrix for A there must exist a unique solution regardless of the choice of b ∈ R3. Algebraically we have,

Ax = b ⇐⇒ x = A−1b, where

x = A−1b

=

264 −5 3 8

−2 2 3

4 −3 −6

375
264 b1

b2

b3

375

=

264 −5b1 + 3b2 + 8b3

−2b1 + 2b2 + 3b3

4b1 − 3b2 − 6b3

375 .

1.5. Left Inversion in Rectangular Cases. Let A−1

left
= (AtA)−1At. Show that A−1

left
A = I. 3

Assuming that the matrix is of full rank, this formula will work whether or not the matrix A is square.4 If they are square then you can

use properties of inverse matrices to show that A−1

left
= A−1. Generally, we have,

A−1

leftA = (AtA)−1AtA = I.(1)

The importance is on the dimensions of the matrices involved. If A ∈ Rm×n then AtA ∈ Rn×n, which implies that the identity matrix

here is In×n.

1.6. Right Inversion in Rectangular Cases. Let A−1

right
= At(AAt)−1. Show that AA−1

right
= I.5

Assuming that the matrix is of full rank, this formula will work whether or not the matrix A is square.6 If they are square then you can

use properties of inverse matrices to show that A−1

right
= A−1. Generally, we have,

AA−1

right = AAt(AAt)−1 = I.(2)

The importance is on the dimensions of the matrices involved. If A ∈ Rm×n then AAt ∈ Rm×m, which implies that the identity matrix

here is Im×m.

1.7. Inversion for Rectangular Matrices. Let A1 = [2 2]t and A2 = [2 2]. Using the previous formula find the left-inverse of A1 and

the right-inverse of A2. Check your results with the appropriate multiplication.

This is just a matter of checking the formula. We already know that for A1 we should get a one-by-one identity matrix. Letting A1 = A

for the following steps, we get,

3This matrix is called the left-inverse of A and it can be shown that if A ∈ Rm×n such that A has a pivot in every column then the left inverse

exists.
4A matrix is of full rank if it has as many pivots as possible.
5This matrix is called the right-inverse of A and it can be shown that if A ∈ Rm×n such that A has a pivot in every row then the right inverse

exists.
6A matrix is of full rank if it has as many pivots as possible.
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A−1

leftA = (AtA)−1AtA =

 h
2 2

i " 2

2

#!−1 h
2 2

i " 2

2

#
(3)

=
1

8

h
2 2

i " 2

2

#
(4)

=
1

8
8 = 1.(5)

For the right inverse we let A2 = A for the following steps gives,

AA−1

right = AAt(AAt)−1(6)

=
h

2 2
i " 2

2

# h
2 2

i " 2

2

#!−1

(7)

= 1.(8)

2. Block Matrix Inversion

Suppose that A ∈ Rn×n can be written in partitioned form as,

A =

"
P Q

R S

#
.(9)

2.1. Inverse Formula One. Suppose that A and P are non-singular and show that,

A−1 =

"
X −P−1QW

−WRP−1 W

#
,(10)

where W = (S−RP−1Q)−1 and X = P−1 + P−1QWRP−1.7

We consider the following block multiplication,

AA−1 =

"
PX−QWRP−1 −QW + QW

RX− SWRP−1 −RP−1QW + SW

#
.(11)

Working out the blocks gives, ˆ
AA−1˜

11
= PX−QWRP−1(12)

= P
`
P−1 + P−1QWRP−1´−QWRP−1(13)

= I,(14)

ˆ
AA−1˜

21
= RX− SWRP−1(15)

= R
`
P−1 + P−1QWRP−1´− `W−1 + RP−1Q

´
WRP−1(16)

= RP−1 + RP−1QWRP−1 −RP−1 −RP−1QWRP−1(17)

ˆ
AA−1˜

22
= −RP−1QW + SW(18)

= −RP−1QW +
`
W−1 + RP−1Q

´
W(19)

= −RP−1QW + I + RP−1QW(20)

I(21)

7Hint: First, remember that if you are given a candidate for an inverse then you need only check that the appropriate multiplication gives you the

identity. Second, you must note that we are working with a matrix whose elements are matrices and when you perform a check you are checking blocks.

Thus, when you perform the check
ˆ
AA−1

˜
11

you are finding the upper-left block of the product matrix and the result should be matrix and not a

scalar. What matrix should you get for this block? What about the rest?
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2.2. Inversion Formula Two. Suppose that A and S are non-singular and show that,

A−1 =

"
X −XQS−1

−S−1RX W

#
,(22)

where X = (P−QS−1R)−1 and W = S−1 + S−1RXQS−1.8

We now consider the following multiplication,

A−1A =

"
XP−XQS−1R XQ−XQ

−S−1RXP + WR −S−1RXQ + WS

#
,(23)

via the blocks,

ˆ
A−1A

˜
11

= XP−XQS−1R(24)

X
`
X−1 + QS−1R

´
−XQS−1R(25)

= I + XQS−1R−XQS−1R(26)

= I,(27)

ˆ
A−1A

˜
21

= −S−1RXP + WR(28)

= −S−1R
`
X−1 + QS−1R

´
+
`
S−1 + S−1RXQS−1´R(29)

= −S−1R− S−1RQS−1R + S−1R + S−1RXQS−1R =(30)

= 0,(31)

ˆ
A−1A

˜
22

= −S−1RXQ + WS(32)

= −S−1RXQ +
`
S−1 + S−1RXQS−1´S(33)

= −S−1RXQ + I + S−1RXQ(34)

= I.(35)

2.3. Conclusion. Show that if P,S,A are all non-singular matrices then (S−RP−1Q)−1 = S−1 + S−1RXQS−1.

We have the existence of an inverse matrix. It is known that if an inverse matrix exists then it is unique. Consequently, the inverse from

part 2 must be equal to the inverse in part 1. Comparing their lower left blocks gives that (S−RP−1Q)−1 = S−1 + S−1RXQS−1.

2.4. Sanity Check. Test these formula with P = a, Q = b, R = c, S = d, where a, b, c, d ∈ R such that ad− cb 6= 0.

Assuming that scalar blocks with nonzero determinant gives,

X = P−1 + P−1QWRP−1 =
1

a
+
b

a
W

c

a
,(36)

where W = a/(ad− bc). Thus, X = d/(ad− bc). Also,

−P−1QW = −b/(ad− bc),(37)

−WRP−1 = −c/(ad− bc),(38)

which gives the standard result for general 2× 2 matrices.

3. Invertible Matrix Theory

Assume that A ∈ Rn×n and without using the invertible matrix theorem, prove the following:

3.1. Spanning Sets. If A is an n× n matrix and A−1 exists, then the columns of A span Rn.

If A is invertible then A has a pivot in each row, which implies that Ax = b has a solution for each b ∈ Rn. Thus, A maps onto Rn or the

columns of A span Rn.

8Hint: Same as before but now it is easiest to check A−1A = I.
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3.2. Pivot Structure. If A is an n× n matrix and Ax = b has a solution for each b ∈ Rn, then A is invertible.

Since Ax = b ∈ Rn has a solution for every b we know that A has a pivot for each row, which implies a pivot for each column. Thus,

A ∼ I and A is invertible.

3.3. Linear Independence. If the matrix A is invertible, then the columns of A−1 are linearly independent.

If A is invertible then A−1 exists and is invertible. Since A−1 is invertible A−1 ∼ I, which implies that every column of A has a pivot and

the columns of A−1 are linearly independent.

3.4. Free Variables I. If the equation Ax = b, where A ∈ Rn×n, has more than one solution for some b ∈ Rn, then the columns of A do

not span Rn.

If Ax = b has non-unique solutions for some b we know that A must not have a pivot for each column, which implies that there isn’t a

pivot for each row. Thus, A does not map onto Rn and its columns do not span Rn.

3.5. Free Variables II. If the equation Ax = b, where A ∈ Rn×n, is inconsistent for some b ∈ Rn, then the equation Ax = 0 has a

non-trivial solution.

Inconsistency of Ax = b implies that there isn’t a pivot for each row but since A is square there isn’t a pivot for each column. This implies

the existence of free-variables and thus non-trivial solutions to the homogeneous problem.

3.6. Linear Dependence. If A is a square matrix with two identical columns then A−1 does not exist.

If two columns are the same then they form a linearly dependent set, which implies there isn’t a pivot for each column. If these vectors are

then placed into a square matrix then the matrix will have at least one column without a pivot. Thus, A cannot be row-reduced to the

identity matrix and is therefore not invertible.

4. Matrix Decompositions

4.1. LU Factorization. Given,

A =

264 1 4 −1 5

3 7 −2 9

−2 −3 1 −4

375 .
Determine the LU-Decomposition of the matrix A and check your result for L by multiplication of three elementary matrices.9

The A matrix row-reduces to the following echelon form,

A ∼

264 1 4 −1 5

0 −5 1 −6

0 0 0 0

375 = U,(39)

by using row-steps given by the following elementary matrices,

E1 =

264 1 0 0

−3 1 0

0 0 1

375 , E2 =

264 1 0 0

0 1 0

2 0 1

375 , E3 =

264 1 0 0

0 1 0

0 1 1

375 ,(40)

whose inversions give our L matrix,

E−1
1 E−1

2 E−1
3 = L =

264 1 0 0

3 1 0

−2 −1 1

375 .(41)

9The matrix U, found by three steps of row reduction on A, will have two pivot columns. These two pivot columns are used to determine the first

two columns of L3×3. The remaining column of L is equal the last column of I3.
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4.2. Spectral Factorization. Suppose A ∈ R3×3 admits a factorization A = PDP−1, where P ∈ R3×3 is a invertible matrix and

D ∈ R3×3 is the diagonal matrix,10

D =

264 1 0 0

0 1/2 0

0 0 1/3

375 .(42)

Find a formula for lim
k→∞

Ak. 11

Since D is a diagonal matrix we have that,

lim
k→∞

Ak = lim
k→∞

PDkP−1(43)

= lim
k→∞

P

264 1 0 0

0 (1/2)k 0

0 0 (1/3)k

375P−1(44)

= P

264 1 0 0

0 0 0

0 0 0

375P−1(45)

4.3. QR Factorization. Suppose that A = QR where Q,R ∈ Rn×n are invertible matrices and R is upper-triangular while Q is such

that QtQ = I. Show that for each b ∈ Rn the equation Ax = b has a unique solution and without using R−1 find formulas for calculating

x.

We have that A is the product of invertible matrices therefore A is invertible and there exists exactly one solution to Ax = b for each

b ∈ Rn. Moreover, using this decomposition we can reduce the problem to an equivalent problem that is already in echelon form,

Ax = QRx = b ⇐⇒ QtQRx = Rx = Qtb,(46)

which is solved up to back-substitution steps.

4.4. Singular Value Decomposition: Special Case. Suppose that A = UΣVt where U,V ∈ Rn× n are invertible with the property

that their transposes are their own inverses and Σ is a diagonal matrix with positive entries on the diagonal. Show that A is an invertible

matrix and find a formula for A−1.

Since Σ is a diagonal matrix with strictly positive diagonal entries is has n−many pivots and is therefore invertible. Thus, A is written

as the product of invertible matrices and is therefore invertible. Its inverse is given by the formula A−1 = (UΣV t)−1 = VΣ−1Ut, where

[Σ]ij = σ−1
i δij .

5. Determinants

5.1. Determinants of Inversions. Show that if A is invertible, then det(A−1) =
1

det (A)
.

By properties of determinants we have det(AA−1) = det(A)det(A−1) = det(I) = 1, which implies that det(A−1) = [det(A)]−1.

5.2. Determinants of Orthogonal Matrices. Let U be a square matrix such that UtU = I. Show that det(U) = ±1.

By properties of determinants we have det(UUt) = det(U)det(Ut) = det(U)det(U = [det(U]2 = det(I) = 1, which implies that det(U) =

±1.

5.3. Determinants of Similar Matrices. Let A and P be square matrices such that P−1 exists. Show that det(PAP−1) = det(A).

By properties of determinants we have det(PAP−1) = det(P)det(A)det(P−1) = det(A).

10A diagonal matrix is a matrix that is both upper and lower triangular. That is A ∈ Rm×n is diagonal if and only if [A]ij = 0 for i 6= j.
11Hint: First find a formula for Ak using the spectral factorization. In this formula the exponent should only change the D matrix.
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5.4. Row-Operation Sanity Check. Given the following for matrices:

A =

"
a b

c d

#
, B =

"
c d

a b

#
, C =

"
a b

kc kd

#
, D =

"
a+ kc b+ kd

c d

#
.

Calculate the determinants of the previous matrices by theorem 2.2.4. In each case, state the row-operation used on A to get to B,C,D

and describe how it affects the determinant.

We note the following,

• A ∼ B by a row-swap

• A ∼ C by a row-scaling

• A ∼ D by a row-replacement

Calculating the determinants of each we get,

det(A) = ad− bc(47)

det(B) = bc− ad = −det(A)(48)

det(C) = kad− kbc = k(ad− bc) = kdet(A)(49)

det(D) = ad− bc = det(A),(50)

which agrees with the rules discussed in class.

5.5. Scaling Properties. Find a formula for det(rA) where A ∈ Rn×n and r ∈ R.

Since rA scales each row by a factor of r we can apply the scaling rule n-many times to get det(rA) = rndet(A).

5.6. Vandermonde Determinant. Given,

A =

264 1 a a2

1 b b2

1 c c2

375 .
Show that the det(A) = (c− a)(c− b)(b− a).12

This calculation is easiest done in conjunction with row-reduction. The following row-reduction,264 1 a a2

1 b b2

1 c c2

375 R2→ R2−R1

∼
R3→ R3−R1

264 1 a a2

0 b− a b2 − a2

0 c− a c2 − a2

375 R3→ R3− (c− a)

(b− a)
R2

∼

264 1 a a2

0 (b− a) b2

0 0 c2 − a2 − (c− a)(b2 − a2)/(b− a)

375 ,
implies that,

det(A) = 1 · (b− a) ·
„
c2 − a2 − (c− a)

b2 − a2

b− a

«
= (b− a)

„
(c− a)(c+ a)− (c− a)

(b− a)(b+ a)

b− a

«
= (b− a)(c− a) (c+ a− b+ a)

= (b− a)(c− a) (c− b)

5.7. Multi-linearity. The determinant is not, in general, a linear mapping. That is, det: Rn×n → R is not, in general, such that,

det(A+B) = det(A)+det(B). The determinant is, in general, multilinear.13 Show this for the domain R3×3 by verifying that det(A) =

det(B) + det(C), where A,B,C are given as,14

A =

264 a11 a12 u1 + v1

a21 a22 u2 + v2

a31 a32 u3 + v3

375 , B =

264 a11 a12 u1

a21 a22 u2

a31 a32 u3

375 , C =

264 a11 a12 v1

a21 a22 v2

a31 a32 v3

375 .
12Hint: It would be in your best interest to use row-reduction methods. This, of course, generalizes. http://en.wikipedia.org/wiki/Vandermonde_

matrix
13A multilinear map is a mathematical function of several vector variables that is linear in each variable. That is, if all columns except one are fixed,

then the determinant is a linear function of that one column. See http://en.wikipedia.org/wiki/Multilinear_map for more information.
14The easiest way to do this is by considering a cofactor expansion down the third column of A. In this case the sums will appear as prefactors and

distribution of multiplication over addition breaks the expansion into two expansions.

http://en.wikipedia.org/wiki/Vandermonde_matrix
http://en.wikipedia.org/wiki/Vandermonde_matrix
http://en.wikipedia.org/wiki/Vandermonde_matrix
http://en.wikipedia.org/wiki/Multilinear_map
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To verify this formula we compute the cofactor expansion down the third column of A. Doing so gives,

det(A) =

3X
i=1

ai3(−1)i+3det (Ai3)(51)

=

3X
i=1

(ui + vi) (−1)i+3det (Ai3)(52)

=

3X
i=1

ui(−1)i+3det (Ai3) +

3X
i=1

vi(−1)i+3det (Ai3)(53)

=

3X
i=1

ui(−1)i+3det (Bi3) +

3X
i=1

vi(−1)i+3det (Ci3)(54)

= det(B) + det(C)(55)
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