


8. The current in a river (think ions in the water) in northern Canada moves at speed v_0 perpendicular to a bridge while the magnetic field, B_0 , points perpendicular to water surface. A wooded suspension bridge over the river is supported from two metal towers in the water which are separated by a distance L. Derive an expression for the voltage between the towers?

9. Explain in detail how you would calculate the charge density σ on a spherical metal shell of radius R with voltage V_0 on the upper hemisphere and $-V_0$ on the lower hemisphere. The two hemispheres are electrically insulated from each other.

Principles; Solve problem when the is no change & apply budy conditions to accept for change. $\nabla^2 V = U$ in splenical words use Soperation of varibles $\nabla^2 V = U$ in splenical words use Soperation of varibles $\nabla^2 V = U$ in splenical words use Soperation of varibles $\nabla^2 V = U$ in splenical words use $\nabla^2 V = U$. For arbitrary budy conditions we must sum these solutes $\nabla^2 V = U$ and $\nabla^2 V = U$ and $\nabla^2 V = U$ and $\nabla^2 V = U$. For arbitrary we can find $\nabla^2 V = U$ and $\nabla^2 V = U$. For any we can find $\nabla^2 V = U$ and $\nabla^2 V = U$. For any $\nabla^2 V = U$ and $\nabla^2 V = U$ and $\nabla^2 V = U$. For any $\nabla^2 V = U$ and $\nabla^2 V = U$ and $\nabla^2 V = U$. For any $\nabla^2 V = U$ and $\nabla^2 V = U$ and $\nabla^2 V = U$. For any $\nabla^2 V = U$ and $\nabla^2 V = U$ and $\nabla^2 V = U$. For any $\nabla^2 V = U$ and $\nabla^2 V = U$ and $\nabla^2 V = U$. For any $\nabla^2 V = U$ and $\nabla^2 V = U$ and $\nabla^2 V = U$. For any $\nabla^2 V = U$ and $\nabla^2 V = U$ and $\nabla^2 V = U$. For any $\nabla^2 V = U$ and $\nabla^2 V = U$ and $\nabla^2 V = U$. For any $\nabla^2 V = U$ and ∇^2