
where we’ve used the definition of enthalpy in terms of energy:

H = U + PV . (22)

Let’s see what happens when we try this out on an ideal gas. Its energy
is given by the equipartition theorem:

U =
f

2
NkT , (23)

where f is the number of degrees of freedom, and its PV product is given
by the ideal-gas law as

PV = NkT . (24)

Therefore, its enthalpy is

Hideal =
f

2
NkT + NkT =

(
f

2
+ 1

)
NkT . (25)

Since Hideal is proportional to T , the constancy of the enthalpy in a throt-
tling process implies constancy of the temperature as well. That is, the
effect vanishes for an ideal gas. Thus, if a throttling process is to change
the temperature, that effect must originate in the nonideality of real gases.
[EOC, Fri. 2/24/2006, #20]

The key to understanding the process lies in the potential energy of
interaction between the molecules. Typically, this looks something like:

PE

r

So if you reduce the pressure, the molecules become farther apart, raising
the potential energy of interaction and correspondingly lowering the kinetic
energy, and with it, the temperature. But it’s also easy to see that at high
enough pressure or high enough temperature, the potential energy of inter-
action can decrease with throttling, causing the temperature to increase,
instead of decrease. So, obtaining a cooling effect may require precooling
or working at lower pressure.

Here’s a rough graph of constant-enthalpy curves for nitrogen gas in the
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pressure-temperature plane:
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The inversion curve passes through the maxima of the nonmonotonic isen-
thalps, marking the boundary between points where a throttling process
cools the gas, to the left of the inversion curve, and points where a throt-
tling process wamrs the gas.

The parameter that describes whether the process warms or cools the
gas at any pressure and temperature is the slope of the isenthalp passing
through that point:

slope of isenthalp =
(

∂T

∂P

)
H

= “Joule-Thomson coefficient.”
(26)

HW Problem. Schroeder problem 4.29, p. 140.
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Chapter 1

Thermodynamic
Potentials

Reading assignment. Schroeder, section 5.2.

1.1 Thermodynamic potentials

So far we’ve mostly focused on the entropy as the central and most funda-
mental quantity in thermal physics. We’ve seen its crucial importance in
understanding and determining equilibrium states when systems are per-
mitted to exchange energy, volume, or particles. But it’s not always the
most convenient quantity to use in thermodynamic calculations, in spite
of its fundamental importance. Working with the energy U and potentials
derived from it is more traditional in thermodynamics, but U itself is also
not always convenient. We’ve seen a few instances in which the enthalpy

H = U + PV (1.1)

is a convenient thermodynamic quantity to use for calculations. This
is most naturally useful when the process of interest takes place under
constant-pressure conditions. Then the volume is not fixed, and some me-
chanical work contributes to U , which is inconvenient to keep track of ex-
plicitly. Working with H relieves us of that need.

The best way to understand all of this in a general way is first to recall
the thermodynamic identity:

dU = T dS − P dV + µdN (1.2)

relating changes in U to changes in S, V , and N . These are the “natural”
variables upon which U depends, and knowledge of the function

U = U(S, V,N) (1.3)
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tells us everything we can know about the thermodynamics of a system.
This is true in the same sense in which knowledge of

S = S(U, V,N) (1.4)

gives us complete knowledge of the thermodynamic behavior of a system.
U = U(S, V,N) contains the same information about the relation among
the four variables U , S, V , and N as S = S(U, V,N).

However, if pressure, rather than volume, is controlled by experimental
conditions, the enthalpy is more convenient; it satisfies the thermodynamic
identity

dH = dU + P dV + V dP

= T dS + V dP + µdN .
(1.5)

This shows that the natural variables upon which H depends are S, P , and
N :

H = H(S, P,N) (1.6)

and that if the pressure is fixed (dP = 0), only changes in entropy and par-
ticle number can make dH 6= 0. In effect, we have replaced the independent
variable V by the independent variable P , which is a derivative quantity:

P = −
(

∂U

∂V

)
S,N

= T

(
∂S

∂V

)
U,N

. (1.7)

1.1.1 Legendre transformations

It’s worthwhile to take a look at the mathematical formulation of this trans-
formation, which is known as a Legendre transformation, in the simple case
of a function of a single variable. Suppose we have some known function

y = y(x) . (1.8)

Knowledge of that function is equivalent to complete tabulation of pairs x,
y:

x y

x1 y1 = y(x1)
x1 y2 = y(x2)
...

...

We’d like a way of expressing that same information in terms of the
derivative quantity

m(x) =
dy

dx
, (1.9)

the slope of the curve. Can we do that by simply rewriting y as a function
of m:

y = y(m) ? (1.10)
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Consider the graph:

y = y(x)

y

x

The “impostors” have the same slope at each point of the curve, hence
the same y(m), but they have different dependences on x, and they do not
contain the same information as y(x). So, if we merely rewrite y in terms
of m, we have lost information—we no longer know which is the correct
curve y(x). But, we can characterize the same curve by coordinate pairs if
those pairs are the slope and the y intercept of the tangent to each point
on the curve:

y

x
b

m

y

x

The tangent to the impostor has the same slope as the correct curve, but
the y intercept of the tangent line is different. Thus, we can express the
correct curve as the alternative set of coordinate pairs

b(m) = {(m1, b1), (m2, b2), . . . } . (1.11)

Let’s see how this function is related to y(x). First recall the connection
between y, x, m, and b:

m =
y − b

x− 0
or y = mx + b . (1.12)

But m can be expressed as a function of x:

m =
dy(x)
dx

= m(x) , (1.13)
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so if we can invert this to get x(m), then we can write b as a function of m
as the independent variable:

b(m) = y[x(m)]−mx(m) . (1.14)

This is a Legendre transformation of the original functional relationship
y = y(x).

Example. Let
y(x) = (x− x0)2 + y0 . (1.15)

The slope is

m =
dy

dx
= 2(x− x0) = m(x) . (1.16)

This can be inverted to get x(m):

x =
m

2
+ x0 = x(m) . (1.17)

In terms of m, y is

y = (x− x0)2 + y0

=
(m

2

)2

+ y0

= y(m) ,

(1.18)

and

b = y −mx

=
(m

2

)2

+ y0 −m
(m

2
+ x0

)
= −m2

4
−mx0 + y0

= b(m) .

(1.19)

By construction, the points on this curve b(m) are exactly those on the
curve y(x). Let’s demonstrate that for two of the points.

• For m = 0 the y intercept is b(0) = y0. The corresponding value of x
from (1.17) is

x(0) = x0 . (1.20)

We can find the corresponding value of y on the original curve y(x)
by plugging this value of x into the original expression for the curve
(1.15):

y(x0) = (x0 − x0)2 + y0 = y0 . (1.21)

And, we can find the corresponding value of y on the straight line
y = mx + b by plugging it into that expression:

y(x0) = mx0 + b = y0 . (1.22)
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So, both the original curve (1.15) and the straight line y(x) = 0x+y0

obtained from m and b(m) for m = 0 give the same mapping between
x and y at that point. That is, the straight line intersects the original
curve at that point—actually it is tangent to the curve, since m =
dy/dx at that point, but it’s the correspondence between x and y that
we’re interested in here.
If, instead, we simply calculate y from the expression for y(m) in
(1.18), we obtain

y(m) = y(0) =
(

0
2

)2

+ y0 = y0 . (1.23)

That is the correct value of y for that slope, but that expression alone
gives us no information on the corresponding value of x—any point
on the line y = y0 could correspond to that value of y.

• For m = 1 the y intercept is b(1) = − 1
4 − x0 + y0. The corresponding

value of x is:
x(1) =

1
2

+ x0 . (1.24)

The value of y that the original function maps this value of x to is

y

(
1
2

+ x0

)
=

(
1
2

+ x0 − x0

)2

+ y0 =
1
4

+ y0 , (1.25)

and the value of y that the tangent line maps this x to is

y = mx + b = 1
(

1
2

+ x0

)
− 1

4
− x0 + y0 =

1
4

+ y0 . (1.26)

Clearly, the curve and the line coincide at that point, too, but this
line is not the same straight line we had for m = 0. As m changes,
the tangent line changes as well; but for every pair (m, b), the corre-
sponding straight line y = mx + b coincides with the original curve
y = (x− x0)2 + y0 at one point (x, y).

1.1.2 Thermodynamic potentials

In thermodynamics, the situation is much the same, except that there are
generally several variables tied up in some functional relationship, and there
are strong physical motivations for making Legendre transformations. Any
of the independent variables upon which the entropy S or the energy U
depend can be “traded” for the variable that is the corresponding derivative
quantity. Our catalog of derivative quantities for simple systems includes

1
T

=
(

∂S

∂U

)
V,N

P

T
=

(
∂S

∂V

)
U,N

−µ

T
=

(
∂S

∂N

)
U,V

T =
(

∂U

∂S

)
V,N

−P =
(

∂U

∂V

)
S,N

µ =
(

∂U

∂N

)
S,V

.

(1.27)
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We have already encountered one of the Legendre transformationss of
the energy, in which the volume was exchanged for the negative of the
pressure as an independent variable, the enthalpy. But it’s easy to see that
there are several other possibilities, including transformations on more than
one variable. The most commonly encountered Legendre transformations
of U(S, V,N) are:

H(S, P,N) = U − (−P )V (enthalpy)
F (T, V,N) = U − TS (Helmholtz free energy)
G(T, P,N) = U − TS − (−P )V (Gibbs free energy) .

(1.28)

These, together with the energy itself, are called thermodynamic potentials.
Each of them is most naturally useful when the independent variables upon
which it depends are experimentally controlled parameters. This is perhaps
easiest to see when one considers the thermodynamic identities they satisfy:

dU = T dS − P dV + µdN

=
(

∂U

∂S

)
V,N

dS +
(

∂U

∂V

)
S,N

dV +
(

∂U

∂N

)
S,V

dN

dH = dU + P dV + V dP

= T dS + V dP + µdN

=
(

∂H

∂S

)
P,N

dS +
(

∂H

∂P

)
S,N

dP +
(

∂H

∂N

)
S,P

dN

dF = dU − T dS − S dT

= −S dT − P dV + µdN

=
(

∂F

∂T

)
V,N

dT +
(

∂F

∂V

)
T,N

dV +
(

∂F

∂N

)
T,V

dN

dG = dU − T dS − S dT + P dV + V dP

= −S dT + V dP + µdN

=
(

∂G

∂T

)
P,N

dT +
(

∂G

∂P

)
T,N

dP +
(

∂G

∂N

)
T,P

dN .

(1.29)

So, for example, the Helmholtz free energy F is convenient when the tem-
perature is constant, so that dT = 0 and changes in F depend only on
changes in volume and particle number. The Gibbs free energy G is con-
venient when both pressure and temperature are fixed, as is commonly the
case in chemical reactions performed in a vessel that is open to the air.

One other important result follows from the information in (1.29): each
of the derivative quantities, T , P , and µ, as well as the variables S, V , and
N , can be expressed in terms of derivatives of some of the potentials. The
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correspondence between the terms in the thermodynamic identity satisfied
by any one of the potentials and the total differential of that potential when
viewed as a function of its natural variables gives the definitions of the three
derivative quantities of that potential. The meanings of the derivatives of
the energy are familiar, but we can also easily extract from (1.29) things
like

T =
(

∂H

∂S

)
P,N

and V =
(

∂G

∂P

)
T,N

. (1.30)

These can be very handy bits of information to have available when one is
manipulating thermodynamic expressions.

One can, of course, construct several additional thermodynamic poten-
tials through other combinations of Legendre transformations of the energy.
In addition, each of the potentials can be expressed in terms of Legendre
transformations of other potentials. For example,

G = F + PV = H − TS and F = G− PV = H − TS − PV . (1.31)

You can see that there are many possibilities.
There is also an analogous family of Legendre transformations of the

entropy, those functions often being called Massieu functions.
One important thing to keep in mind is that you need not memorize

this entire blizzard of formulas. Nor need you spend time looking through
several books for just the right one when you need one. If you only remem-
ber the thermodynamic identity for the energy, dU = T dS−P dV + µdN ,
and either the natural variables upon which each potential depends or the
definition of each potential in terms of a Legendre transformation of the
energy, together with the list of variables upon which U depends, it is ex-
tremely easy to construct all the other formulas in a matter of seconds.
Even the definitions of the derivative quantities T , P , and µ in terms of U
need not be memorized.

HW Problem. Schroeder problem 5.12, pp. 158–159.

HW Problem. Schroeder problem 5.14, p. 159.
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