13
 Mechanisms for the nonlinear refractive index

Several mechanisms can lead to a nonlinear refractive index

- Electronic
- Anharmonic binding potential, fast < fs
- Molecular Rotation
- Re-orientation of molecule, ~ps
- Thermal (dn/dT)
- Heating of lattice, expansion, slow - ~ ms to sec
- Ionization
- Free electron density changes index
- Semiconductor
- conduction band population changes fast
- Relativistic
- Oscillating electron mass shift changes index

Electronic response

- $\mathrm{n}_{2} \sim 3 \times 10^{-16} \mathrm{~cm}^{2} / \mathrm{W}$ (e.g. in sapphire)
- Example: for $L=10 \mathrm{~mm}, \lambda=0.8 \mathrm{um}$, We need $\mathrm{I}=4.2 \times 10^{10} \mathrm{~W} / \mathrm{cm}^{2}$ for $\mathrm{B}=1$
If the spot radius $=1 \mathrm{~mm}$, duration 100 ps :
max energy $=130 \mathrm{~mJ}$
- Note that since potential almost always decreases at large displacement from the nucleus
- Large amplitude = weaker binding, lower resonance freq
- Therefore $\mathrm{n}_{2}>1$

Molecular electronic response: induced dipole

- This is the dominant response for anisotropic molecular liquids and gases
- Electric field aligns molecules on a ps time crale
- Induced dipole: $p=\alpha E$
- Polarizability α is larger along long axis
- Weaker binding, more response
- Polarizability is a tensor $\mathbf{p}=\vec{\alpha} \cdot \mathbf{E}$

- In molecular coordinates: $\mathbf{p}=\alpha_{x} E_{x} \hat{\mathbf{x}}+\alpha_{y} E_{y} \hat{\mathbf{y}}+\alpha_{z} E_{z} \hat{\mathbf{z}}$
- Permanent dipole is indep of \mathbf{E}

Molecular alignment in the field

- If applied field is not along an axis, there is a torque

$$
\tau=\mathbf{p} \times \mathbf{E}
$$

- Use energy instead of force
- For permanent dipole:

$$
U=-\mathbf{p} \cdot \mathbf{E}=-p_{\|} E_{\|}-p_{\perp} E_{\perp} \quad \text { For uniaxial molecule }
$$

- For induced dipole:

$$
\begin{aligned}
& d U=-\alpha_{\|} E_{\|} d E_{\|}-\alpha_{\perp} E_{\perp} d E_{\perp} \quad E_{\perp}=E \sin \theta \quad E_{\|}=E \cos \theta \\
& U=-\frac{1}{2} \alpha_{\|} E_{\|}^{2}-\frac{1}{2} \alpha_{\perp} E_{\perp}^{2}=-E^{2}\left(\alpha_{\|} \cos ^{2} \theta+\alpha_{\perp} \sin ^{2} \theta\right) \\
& U=-\frac{1}{2} \alpha_{\perp} E^{2}-\frac{1}{2}\left(\alpha_{\|}-\alpha_{\perp}\right) E^{2} \cos ^{2} \theta \quad \text { When } \alpha_{\|}>\alpha_{\perp}, \\
& \text { U is minimized for } \theta=0
\end{aligned}
$$

Nonlinear refractive index for molecular gas

- Refractive index built on dipole response

$$
n^{2}=1+\chi=1+N\langle\alpha\rangle
$$

- We have to average over all molecular orientations
- What is the distribution of angles?
- Boltzmann distribution: $e^{-U / k T}$
- Averaging over distribution:

$$
\langle f(\theta)\rangle=\frac{\int f(\theta) e^{-U(\theta) / k T} d \Omega}{\int e^{-U(\theta) / k T} d \Omega}
$$

Thermal averaged molecular response

- Get thermal average for induced dipole
- Angle-dependent energy:
- Let $U(\theta)=-J \cos ^{2} \theta k T$
- With

$$
J=\frac{1}{2}\left(\alpha_{3}-\alpha_{1}\right) \bar{E}^{2} / k T
$$

- Use time averaged E^{2}, since molecule can't respond during one cycle
- Function to average:

$$
\begin{aligned}
& f(\theta)=\alpha(\theta)=\left(\alpha_{3} \cos ^{2} \theta+\alpha_{1} \sin ^{2} \theta\right)=\alpha_{1}+\left(\alpha_{3}-\alpha_{1}\right) \cos ^{2} \theta \\
& \langle\alpha(\theta)\rangle=\alpha_{1}+\left(\alpha_{3}-\alpha_{1}\right) \frac{\int \cos ^{2} \theta e^{-u(\theta) / k T} \cos \theta d \theta}{\int e^{-u(\theta) / k T} d \Omega}
\end{aligned}
$$

n_{2} calculation for molecular response

- For very low intensity ($\mathrm{J} \sim 0$), $\left\langle\cos ^{2} \theta>=1 / 3\right.$
- For nonlinear response (higher intensity) get $1^{\text {st }}$ order in intensity

$$
\chi^{(3)}=\frac{2}{45} N \frac{\left(\alpha_{3}-\alpha_{1}\right)^{2}}{k T}
$$

- Note that there has to be time for response and thermalization
- shorter timescales: "impulsive Raman response"
- delay in response
- oscillations in refractive index

Thermal NL effects

- Due to linear absorption the laser can heat the medium
- Laser pumping in a crystal
- high average power propagation in low-absorption medium
- Absorption leads to a temperature gradient
- Refractive index depends on temperature

$$
n(T)=n_{0}+\frac{d n}{d T} T(r)
$$

$-\mathrm{dn} / \mathrm{dT}$ is typically positive, sometimes <0

- Results from lattice (or gas) expansion

Establishing a thermal distribution

- Heat equation

$$
\left(\rho_{0} C\right) \frac{\partial T}{\partial t}-\kappa \nabla^{2} T=Q=\alpha I(r) \quad \begin{aligned}
& \mathrm{C}=\text { specific heat } \\
& \rho_{0}=\text { mass density } \\
& \mathrm{\kappa}=\text { thermal conductivity } \\
& \mathrm{Q}=\text { heat source distribution }
\end{aligned}
$$

- Estimate time response: scale equation

$$
\left(\rho_{0} C\right) \frac{T}{\tau} \sim \kappa \frac{T}{R^{2}} \quad \rightarrow \tau \approx \frac{\rho_{0} C}{\kappa} R^{2}
$$

- Typically $\sim 1 \mathrm{sec}$ for macroscopic beams $\sim \mathrm{mm}$
- Note: $\mathrm{dn} / \mathrm{dT}, \mathrm{C}$, and $\mathrm{\kappa}$ all depend on temperature
- Cryo cooling reduces thermal effects dramatically
- Smaller thermal gradient, faster cooling response

Thermal lensing

- $T(r)$ leads to $n(r)$, which leads to a lensing effect
- Assume steady state (CW or averaged over many shots) ${ }_{-\kappa} \nabla^{2} T=\alpha I(r)=\alpha I_{0} e^{-2 r^{2} / \omega_{0}^{2}}$
- Approximation:

$$
\begin{aligned}
& \kappa \frac{\Delta T}{w_{0}^{2}} \approx \alpha I_{0} \rightarrow \Delta T \approx \frac{\alpha I_{0}}{\kappa} w_{0}^{2} \\
& \Delta n=\frac{d n}{d T} \Delta T \approx\left(\frac{d n}{d T} \frac{\alpha}{\kappa} w_{0}^{2}\right) I_{0} \quad \text { Effective } \mathbf{n}_{2}
\end{aligned}
$$

- Other contributions:
- Bowing out of crystal surfaces, stress birefringence

Plasma frequency

- The plasma frequency is the fundamental collective oscillation
- Consider a cube of plasma (number density n_{e}) with fixed ion background
- Displace the electrons by dx
- Calculate surface charge
- Use Gauss' law to calculate restoring force
- Then calculate oscillation frequency

Plasma frequency

- The plasma frequency is the fundamental collective oscillation
- Consider a cube of plasma (number density n_{e}) with fixed ion background
- Displace the electrons by $+d x$
- Use Gauss' law to calculate field and restoring force
- Gaussian pill box on one side

$$
\varepsilon_{0} \int \mathbf{E} \cdot \mathbf{d S}=-\varepsilon_{0} E A=\int\left(-e n_{e}\right) d V=-e n_{e} A d x
$$

- Equation of motion:

$$
\begin{aligned}
& \text { F of motion: } n_{e} e^{2} \\
& \varepsilon_{0}
\end{aligned} x=-e E=m_{e} \ddot{x} \quad \rightarrow \ddot{x}=-\frac{e^{2} n_{e}}{\varepsilon_{0} m_{e}} x
$$

- Oscillation frequency

$$
\omega_{p}^{2}=\frac{n_{e} e^{2}}{\varepsilon_{0} m_{e}}
$$

Maxwell's equations in a plasma

- All charges are free. Maxwell's equations:

$$
\begin{array}{ll}
\varepsilon_{0} \nabla \cdot \mathbf{E}=Z e n_{i}-e n_{e} & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}=-\dot{\mathbf{B}} & \nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}+\varepsilon_{0} \dot{\mathbf{E}}\right)
\end{array}
$$

- Current

$$
\begin{aligned}
& \mathbf{J}=q n \mathbf{u}=Z e n_{i} \mathbf{u}_{i}-e n_{e} \mathbf{u}_{e} \\
& \mathbf{J}=-e n_{e} \mathbf{u} \quad \text { If only electrons are moving }
\end{aligned}
$$

- Charge continuity equation

$$
\frac{\partial n_{e}}{\partial t}+\nabla \cdot\left(n_{e} \mathbf{u}\right)=0
$$

The force equation and convective derivative

- Equation of motion for a single particle:

$$
m_{e} \frac{d \mathbf{v}}{d t}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

- For a fluid, multiply by n_{e} :

$$
m_{e} n_{e} \frac{d \mathbf{u}}{d t}=q n_{e}(\mathbf{E}+\mathbf{u} \times \mathbf{B})
$$

- We want a fixed reference frame in space, so to account for the flow, we can write this total derivative as $\frac{d}{d t}=\frac{\partial}{\partial t}+\frac{\partial x}{\partial t} \frac{\partial}{\partial x}$
- Or in 3D: $\quad \frac{d}{d t}=\frac{\partial}{\partial t}+\mathbf{u} \cdot \nabla$
$\rightarrow m_{e} n_{e}\left(\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)=q n_{e}(\mathbf{E}+\mathbf{u} \times \mathbf{B})$

Alternate derivation of plasma frequency

- A plasma oscillation is purely electrostatic $\mathrm{B}=0$

$$
m_{e} n_{e}\left(\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)=q n_{e} \mathbf{E} \quad \frac{\partial n_{e}}{\partial t}+\nabla \cdot\left(n_{e} \mathbf{u}\right)=0 \quad \varepsilon_{0} \nabla \cdot \mathbf{E}=Z e n_{i}-e n_{e}
$$

- Assume $\mathrm{Z}=1$, and 1D motion in x direction

$$
\nabla \times \mathbf{E}=-\dot{\mathbf{B}}=0
$$

$$
m_{e} n_{e}\left(\frac{\partial v}{\partial t}+v \frac{\partial v}{\partial x}\right)=-e n_{e} \mathbf{E} \quad \frac{\partial n_{e}}{\partial t}+\frac{\partial}{\partial x}\left(n_{e} v\right)=0 \quad \varepsilon_{0} \frac{\partial E}{\partial x}=e\left(n_{i}-n_{e}\right)
$$

Linearization of the equations

- Linearize the equations ($1^{\text {st }}$ order perturbation)

$$
n_{e}=n_{0}+n_{1} \quad v=v_{0}+v_{1} \quad E=E_{0}+E_{1} \quad n_{i}=n_{i 0}+n_{i 1}
$$

- Assume unperturbed plasma is uniform, at rest
$\nabla n_{0}=0 \quad v_{0}=0 \quad E_{0}=0 \quad \frac{\partial n_{0}}{\partial t}=\frac{\partial v_{0}}{\partial t}=\frac{\partial E_{0}}{\partial t}=0 \quad n_{i}=n_{0}, \quad n_{i 1}=0$

$$
\frac{\partial v_{1}}{\partial t}+v_{f} \frac{\partial \bigvee_{1}}{\partial x}=-\frac{e}{m_{e}} \mathbf{E}_{1} \quad \frac{\partial n_{1}}{\partial t}+\frac{\partial}{\partial x}\left(n_{0} v_{1}+n_{1}{v_{1}}^{\prime}\right)=0 \quad \varepsilon_{0} \frac{\partial E_{1}}{\partial x}=-e n_{1}
$$

- Input field varies sinusoidally, so does $\mathrm{v}_{1}, \mathrm{n}_{1}$
- Note this is a longitudinal wave osc and k in x -direction

$$
\mathbf{E}_{1}=E_{1} e^{i(k x-\omega t)} \hat{\mathbf{x}} \quad \mathbf{v}_{1}=v_{1} e^{i(k x-\omega t)} \hat{\mathbf{x}} \quad n_{1}=n_{1} e^{i(k x-\omega t)}
$$

Solution for plasma oscillation frequency

- Evaluate derivatives

$$
-i \omega v_{1}=-\frac{e}{m_{e}} E_{1} \quad-i \omega n_{1}+i k n_{0} v_{1}=0 \quad i k \varepsilon_{0} E_{1}=-e n_{1}
$$

- Eliminate E_{1} and n_{1}

$$
\begin{aligned}
& n_{1}=-i \frac{k \varepsilon_{0}}{e} E_{1} \quad k n_{0} v_{1}=\omega n_{1}=-i \omega \frac{k \varepsilon_{0}}{e} E_{1} \quad \rightarrow E_{1}=i \frac{n_{0} e}{\varepsilon_{0} \omega} v_{1} \\
& -i \omega v_{1}=-\frac{e}{m_{e}} E_{1}=-\frac{e}{m_{e}}\left(i \frac{n_{0} e}{\varepsilon_{0} \omega} v_{1}\right)
\end{aligned}
$$

- End up with plasma frequency $\rightarrow \omega_{p}{ }^{2}=\frac{n_{0} e^{2}}{\varepsilon_{0} m_{e}}$
$\quad-$ Note that

$$
v_{1}=-i \frac{e}{m_{e} \omega} E_{1} \quad n_{1}=-i \frac{k \varepsilon_{0}}{e} E_{1} \quad v_{1}, n_{1} 90^{\circ} \text { out of phase with } \mathrm{E}
$$

EM waves in a free electron, unmagnetized plasma

- Here we are looking for propagating transverse EM waves

$$
\begin{aligned}
& \nabla n_{0}=0 \quad v_{0}=0 \quad \begin{array}{l}
E_{0}=0 \\
\mathbf{B}_{0}=0
\end{array} \quad \frac{\partial n_{0}}{\partial t}=\frac{\partial v_{0}}{\partial t}=\frac{\partial E_{0}}{\partial t}=0 \quad n_{i}=n_{0}, \quad n_{i 1}=0 \\
& \nabla \times \mathbf{B}_{1}=\mu_{0} \varepsilon_{0}\left(\frac{\mathbf{J}_{1}}{\varepsilon_{0}}+\dot{\mathbf{E}}_{1}\right)=\frac{1}{c^{2}}\left(\frac{\mathbf{J}_{1}}{\varepsilon_{0}}+\dot{\mathbf{E}}_{1}\right)
\end{aligned}
$$

- Take time derivative of $1^{\text {st }} \mathrm{eqn}$
$\nabla \times \dot{\mathbf{B}}_{1}=\frac{1}{c^{2}}\left(\frac{\dot{\mathbf{J}}_{1}}{\varepsilon_{0}}+\ddot{\mathbf{E}}_{1}\right)$
$\nabla \times \nabla \times \mathbf{E}_{1}=\nabla\left(\nabla \cdot \mathbf{E}_{1}\right)-\nabla^{2} \mathbf{E}_{1}=-\nabla \times \dot{\mathbf{B}}_{1}=-\frac{1}{c^{2}}\left(\frac{\dot{\mathbf{j}}_{1}}{\varepsilon_{0}}+\ddot{\mathbf{E}}_{1}\right)$

EM waves in a free electron gas

- From previous slide: $\nabla\left(\nabla \cdot \mathbf{E}_{1}\right)-\nabla^{2} \mathbf{E}_{1}=-\frac{1}{c^{2}}\left(\frac{\dot{\mathbf{J}}_{1}}{\varepsilon_{0}}+\ddot{\mathbf{E}}_{1}\right)$
- Assume plane waves of form $\exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]$

$$
-\mathbf{k}\left(\mathbf{k} \cdot \mathbf{E}_{1}\right)+k^{2} \mathbf{E}_{1}=-\frac{1}{c^{2}}\left(-i \omega \frac{\mathbf{J}_{1}}{\varepsilon_{0}}-\omega^{2} \mathbf{E}_{1}\right)
$$

- We are looking for transverse waves $\mathbf{k} \cdot \mathbf{E}=0$
$\left(\omega^{2}-k^{2} c^{2}\right) \mathbf{E}_{1}=-i \omega \frac{\mathbf{J}_{1}}{\varepsilon_{0}}$
- Note that $\mathbf{J}_{\mathbf{1}}$ can be a source for an EM wave $\mathbf{E}_{\mathbf{1}}$

Dispersion of a free electron gas

- For high frequency waves, only electrons are moving

$$
\mathbf{J}_{1}=-n_{0} e \mathbf{v}_{1}
$$

- This velocity is driven by the E-field

$$
m_{e} \frac{d \mathbf{v}_{1}}{d t}=-e \mathbf{E}_{1} \quad \rightarrow i \omega \mathbf{v}_{1}=\frac{e}{m_{e}} \mathbf{E}_{1} \quad \mathbf{J}_{1}=-n_{0} e \frac{e}{i m_{e} \omega} \mathbf{E}_{1}=-\frac{n_{0} e^{2}}{i m_{e} \omega} \mathbf{E}_{1}
$$

- Put this into wave equation:

$$
\left(\omega^{2}-k^{2} c^{2}\right) \mathbf{E}_{1}=-i \omega \frac{\mathbf{J}_{1}}{\varepsilon_{0}}=-i \frac{\omega}{\varepsilon_{0}}\left(-\frac{n_{0} e^{2}}{i m_{e} \omega} \mathbf{E}_{1}\right)=\frac{n_{0} e^{2}}{\varepsilon_{0} m_{e}} \mathbf{E}_{1}=\omega_{p}^{2} \mathbf{E}_{1}
$$

- Finally we have the dispersion relation

$$
\omega^{2}=\omega_{p}^{2}+k^{2} c^{2} \quad k^{2} \equiv \frac{\omega^{2}}{c^{2}} n^{2}=\frac{\omega^{2}}{c^{2}}-\frac{\omega_{p}^{2}}{c^{2}}=\frac{\omega^{2}}{c^{2}}\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)
$$

Cutoff frequency

- Refractive index $n=\sqrt{1-\frac{\omega_{p}^{2}}{\omega^{2}}} \quad n^{2}=1-\frac{N_{e}}{N_{c r}} \quad N_{c r}=\frac{\varepsilon_{0} m_{e} \omega^{2}}{e^{2}}$
- For $\begin{aligned} & \omega<\omega_{p} \\ & N_{e}>N_{c r}\end{aligned} \quad n=i \frac{\omega_{p}}{\omega} \sqrt{1-\frac{\omega^{2}}{\omega_{p}^{2}}} \quad \begin{aligned} & \text { Take +'ve root for energy } \\ & \text { conservation }\end{aligned}$
- And wave is exponentially damped (reflected)
$e^{i\left(k_{p} n z-\omega t\right)}=\exp \left[-\frac{\omega}{c} \frac{\omega_{p}}{\omega} \sqrt{1-\frac{\omega^{2}}{\omega_{p}^{2}}} z-i \omega t\right]=\exp \left[-\frac{\omega_{p}}{c} \sqrt{1-\frac{\omega^{2}}{\omega_{p}^{2}}} z-i \omega t\right]$
- 1 /coefficient of z is the skin depth
- For low frequency waves, electrons can move to shield out E-field from conductor

Dispersive propagation in plasma

- For high frequency waves (plasma is "underdense")

$$
n=\sqrt{1-\frac{\omega_{p}^{2}}{\omega^{2}}}<1
$$

- Phase velocity is >c: $V_{p h}=\frac{\omega}{k}=\frac{c}{n}=c\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)^{-1 / 2}>c$
- But group velocity is $<\mathrm{c}: V_{g r}=\left(\frac{d k}{d \omega}\right)^{-1}=c\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)^{+1 / 2}<c$
- For low electron density, we often approximate:

$$
n=\sqrt{1-\frac{\omega_{p}^{2}}{\omega^{2}}} \approx 1-\frac{\omega_{p}^{2}}{2 \omega^{2}}=1-\frac{N_{e}}{2 N_{c r}}
$$

Ionization defocusing

- Refractive index for a free electron gas

$$
n^{2}=1-\frac{\omega_{p}^{2}}{\omega^{2}} \quad \omega_{p}^{2}=\frac{N_{e} e^{2}}{\varepsilon_{0} m_{e}} \quad \text { Plasma frequency }
$$

- Plasma is transparent for $\omega>\omega_{p}$
- Alternative representation:

$$
n^{2}=1-\frac{N_{e}}{N_{c r}} \quad N_{e}=\frac{\varepsilon_{0} m_{e} \omega^{2}}{e^{2}} \quad \text { Critical density }
$$

- As laser ionizes medium, increase in N_{e} decreases n
- Leads to a defocusing effect if beam is peaked in center

Ionization mechanisms

- Optical field ionization
- Multiphoton ionization: $\mathrm{dN}_{\mathrm{e}} / \mathrm{dt} \sim \mathrm{I}^{\mathrm{m}}$ where $\mathrm{m}=\mathrm{U}_{\text {ion }} / \mathrm{hv}$
- Tunneling ionization: strong E-field suppresses binding potential. Bound electron can tunnel through barrier
- Avalanche ionization
- Seed electron is heated in field
- Collisional ionization frees more electron
- Exponential build up

The ponderomotive potential

- Consider a free electron responding to an EM wave

$$
\begin{aligned}
& m_{e} \frac{d \mathbf{v}_{\mathbf{1}}}{d t}=-e \mathbf{E}_{1} \quad \quad \mathbf{E}_{\mathbf{1}}=E_{1}(x, y) \cos \left(k_{z} z-\omega t\right) \hat{\mathbf{x}} \\
& \mathbf{v}_{\mathbf{1}}=-\frac{e}{m_{e}} \int \mathbf{E}_{1} d t=\frac{e}{m_{e} \omega} E_{1}(x, y) \sin \left(k_{z} z-\omega t\right) \hat{\mathbf{x}}
\end{aligned}
$$

- Calculate the time-averaged KE:

$$
\left\langle\frac{1}{2} m_{e} v_{1}^{2}\right\rangle=\left\langle\frac{e^{2}}{2 m_{e} \omega^{2}} E_{1}^{2}(x, y) \sin ^{2}\left(k_{z} z-\omega t\right)\right\rangle=\frac{e^{2}}{4 m_{e} \omega^{2}} E_{1}^{2}(x, y)
$$

- This is the ponderomotive potential

$$
U_{p}=\frac{e^{2} E_{1}^{2}}{4 m_{e} \omega^{2}}
$$

Field energy is put into coherent KE of the electrons: High intensity leads to a greater potential energy

Scaling of the ponderomotive potential

- In terms of intensity: $I=\frac{1}{2} n \varepsilon_{0} c E_{1}{ }^{2}$
$U_{p}=\frac{e^{2} E_{1}{ }^{2}}{4 m_{e} \omega^{2}}=\frac{e^{2}}{4 m_{e} c^{2} k^{2} \frac{1}{2} n \varepsilon_{0} c} I_{1}=\frac{r_{e} \lambda^{2}}{2 \pi n c} I_{1}$
$r_{e}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{m_{e} c^{2}} \quad \begin{aligned} & \text { classical electron radius } \\ & =2.82 \times 10^{-15} \mathrm{~m}\end{aligned}$
- For numerical estimates:

$$
U_{p} \approx 9 \times 10^{-14} I_{1} \lambda^{2} \quad e V \quad l \begin{aligned}
& \text { Intensity in } \mathrm{W} / \mathrm{cm} 2 \\
& \text { Wavelength in microns }
\end{aligned}
$$

The ponderomotive force

- If we treat U_{p} as a potential, then we expect a force when there is a gradient of U_{p} :

$$
F_{p}=-\nabla U_{p}=-\frac{e^{2}}{4 m_{e} \omega^{2}} \nabla\left(E_{1}^{2}\right)
$$

- For intensity gradient along the polarization direction, electron moves farther downhill than it returns.
- But force is actually independent of polarization direction.

Derivation of the ponderomotive force

- First order response

$$
\begin{array}{cc}
\mathbf{v}_{1}=-\frac{e}{m_{e} \omega} \mathbf{E}_{10} \sin (\omega t)=\frac{d \mathbf{r}_{1}}{d t} & \delta \mathbf{r}_{1}=\frac{e}{m_{e} \omega^{2}} \mathbf{E}_{10} \cos (\omega t) \\
1^{\text {st }} \text { order velocity } & \text { order amplitude }
\end{array}
$$

- Expand equations to second order (at $\mathrm{z}=0$)

$$
\mathbf{E}(\mathbf{r}) \approx \mathbf{E}_{1}\left(r_{0}\right)+\left.\delta \mathbf{r}_{1} \cdot \nabla \mathbf{E}_{1}\right|_{r=r_{0}}+\cdots
$$

- Need to add a term to the force equation: $\mathbf{v}_{1} \times \mathbf{B}_{1}$

$$
\begin{gathered}
\nabla \times \mathbf{E}=-\dot{\mathbf{B}}
\end{gathered} \quad \rightarrow \mathbf{B}_{1}=-\frac{1}{\omega} \nabla \times\left.\mathbf{E}_{10}\right|_{r=r_{0}} \sin \omega t
$$

Derivation of the ponderomotive force

- Evaluate $2^{\text {nd }}$ order of force equation

$$
\begin{aligned}
& m_{e} \frac{d \mathbf{v}}{d t}=-e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \quad \mathbf{v}_{1} \times \mathbf{B}_{1}=\frac{e}{m_{e} \omega^{2}} \mathbf{E}_{10} \times \nabla \times \mathbf{E}_{10} \sin ^{2} \omega t \\
& \mathbf{E}_{2}(\mathbf{r})=\delta \mathbf{r}_{1} \cdot \nabla \mathbf{E}_{10} \cos \omega t \quad \delta \mathbf{r}_{1}=\frac{e}{m_{e} \omega^{2}} \mathbf{E}_{10} \cos (\omega t) \\
& =\frac{e}{m_{e} \omega^{2}} \mathbf{E}_{10} \cos (\omega t) \cdot \nabla \mathbf{E}_{10} \cos \omega t \\
& m_{e} \frac{d}{d t} \mathbf{v}_{2}=-e\left(\frac{e}{m_{e} \omega^{2}} \mathbf{E}_{10} \cdot \nabla \mathbf{E}_{10} \cos ^{2} \omega t+\frac{e}{m_{e} \omega^{2}} \mathbf{E}_{10} \times \nabla \times \mathbf{E}_{10} \sin ^{2} \omega t\right)
\end{aligned}
$$

- Time average

$$
m_{e}\left\langle\frac{d}{d t} \mathbf{v}_{2}\right\rangle=-\frac{e^{2}}{2 m_{e} \omega^{2}}\left(\mathbf{E}_{10} \cdot \nabla \mathbf{E}_{10}+\mathbf{E}_{10} \times \nabla \times \mathbf{E}_{10}\right)=-\frac{e^{2}}{4 m_{e} \omega^{2}} \nabla E_{10}{ }^{2}
$$

SHG as a diagnostic of gradients in plasma density and E-fields

A second-harmonic signal can arise in an initally isotropic medium when the symmetry is broken

- Third-order response with quasi-DC field (from charge separation)

$$
\mathbf{P}(2 \omega)=\chi_{a}{ }^{(3)}(2 \omega) \mathbf{E}(\omega)\left[\mathbf{E}_{D C} \cdot \mathbf{E}(\omega)\right]+\chi_{b}{ }^{(3)}(2 \omega) \mathbf{E}_{D C}|\mathbf{E}(\omega)|^{2}
$$

- Gradient in the electron density

$$
\mathbf{P}(2 \omega)=-i \frac{e^{3}}{2 m^{2} \omega^{3}}(\nabla \delta n \cdot \mathbf{E}) \mathbf{E}
$$

Example: conventionally focused pulses, the density gradient follows the Gaussian focus: leads to SH signal with lobes:

Gradient points radially outwards E -field is linearly polarized

Bethune PRA 233139 (1981)
Li et al, OptLett 39, 961 (2014)

Second harmonic generation in non-uniform plasmas

- Starting equations

$$
\begin{aligned}
& m_{e}\left(\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}\right)=q(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \quad \frac{\partial n_{e}}{\partial t}+\nabla \cdot\left(n_{e} \mathbf{v}\right)=0 \\
& \quad \nabla \times \mathbf{E}=-\dot{\mathbf{B}} \quad \varepsilon_{0} \nabla \cdot \mathbf{E}=e\left(n_{i}-n_{e}\right) \quad \nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}+\varepsilon_{0} \dot{\mathbf{E}}\right) \quad \nabla \cdot \mathbf{B}=0
\end{aligned}
$$

- Expand variables in a perturbation series

$$
n_{e}=n_{0}+n_{1}+n_{2}+\cdots \quad \mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}+\cdots \quad \mathbf{J}=\mathbf{J}_{1}+\mathbf{J}_{2}+\cdots
$$

- We're looking for the current that drives SH

$$
\mathbf{J}_{1}=-e n_{0} \mathbf{v}_{1} \quad \mathbf{J}_{2}=-e n_{1} \mathbf{v}_{1}-e n_{0} \mathbf{v}_{2}
$$

- So we need to expand velocity to $2^{\text {nd }}$ order

First order solutions

- Similar to derivation of EM wave in plasma
- Assume harmonic waves (no assumption on polarization)
- For simplicity, we will assume no gradients in E, B (plane wave) $\nabla \times \mathbf{E}=-\dot{\mathbf{B}}=i \omega \mathbf{B}$
- Solve for $1^{\text {st }}$ order velocity
$m_{e}\left(\frac{\partial \mathbf{v}_{1}}{\partial t}+(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{v}\right)=q(\mathbf{E}+\boldsymbol{y} \times \mathbf{B})$
$\frac{\partial}{\partial t} \mathbf{v}_{1}=-i \omega \mathbf{v}_{10} e^{i(\mathbf{k r}-\omega t)}=-\frac{e}{m_{e}} \mathbf{E}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \quad \rightarrow \mathbf{v}_{10}=-i \frac{e}{m_{e} \omega} \mathbf{E}_{0}$

First order solutions

- Solve for $1^{\text {st }}$ order density variation

$$
\begin{aligned}
& \frac{\partial n_{1}}{\partial t}+\nabla \cdot\left(n_{0} \mathbf{v}_{\mathbf{1}}\right)=0 \quad \mathbf{v}_{10}=-i \frac{e}{m_{e} \omega} \mathbf{E}_{\mathbf{0}} \\
& -i \omega n_{10}+\nabla \cdot\left(n_{0} \mathbf{v}_{10}\right)=-i \omega n_{10}+\nabla \cdot\left(n_{0}\left(-i \frac{e}{m_{e} \omega} \mathbf{E}_{\mathbf{0}}\right)\right)=0 \\
& n_{10}=-\frac{e}{m_{e} \omega^{2}} \nabla \cdot\left(n_{0} \mathbf{E}_{\mathbf{0}}\right)
\end{aligned}
$$

- Gauss' law $\varepsilon_{0} \nabla \cdot \mathbf{E}=e\left(n_{i}-n_{e}\right)=-e n_{10}$
- Note that we have two expressions for n_{10}

Connect charge perturbation to density gradient

- From previous slide:

$$
\nabla \cdot \mathbf{E}=-\frac{e}{\varepsilon_{0}} n_{10} \quad n_{10}=-\frac{e}{m_{e} \omega^{2}} \nabla \cdot\left(n_{0} \mathbf{E}_{\mathbf{0}}\right)
$$

- Expand div term:

$$
\nabla \cdot \mathbf{E}=\frac{e^{2}}{\varepsilon_{0} m_{e} \omega^{2}} \nabla \cdot\left(n_{0} \mathbf{E}_{0}\right)=\frac{e^{2}}{\varepsilon_{0} m_{e} \omega^{2}}\left(n_{0} \nabla \cdot \mathbf{E}_{0}+\mathbf{E}_{0} \cdot \nabla n_{0}\right)
$$

- Gather div E terms

$$
\begin{aligned}
& \text { Gather div terms } \\
& \nabla \cdot \mathbf{E}_{0}-\frac{e^{2} n_{0}}{\varepsilon_{0} m_{e} \omega^{2}} \nabla \cdot \mathbf{E}_{0}=\frac{e^{2}}{\varepsilon_{0} m_{e} \omega^{2}} \mathbf{E}_{0} \cdot \nabla n_{0} \quad \frac{e^{2} n_{0}}{\varepsilon_{0} m_{e} \omega^{2}}=\frac{\omega_{p}^{2}}{\omega^{2}} \\
& \nabla \cdot \mathbf{E}_{0}=\frac{e^{2}}{\varepsilon_{0} m_{e} \omega^{2}} \frac{\mathbf{E}_{0} \cdot \nabla n_{0}}{1-\frac{\omega_{p}^{2}}{\omega^{2}}}=-\frac{e}{\varepsilon_{0}} n_{10} \quad n_{10}=-\frac{e}{m_{e} \omega^{2}} \frac{\mathbf{E}_{0} \cdot \nabla n_{0}}{\varepsilon_{p}}
\end{aligned}
$$

Calculate $2^{\text {nd }}$ order velocity

- From Lorentz equation

$$
m_{e}\left(\frac{\partial \mathbf{v}_{2}}{\partial t}+\left(\mathbf{v}_{1} \cdot \nabla\right) \mathbf{v}_{1}\right)=-e\left(\boldsymbol{E}^{\prime}+\mathbf{v}_{1} \times \mathbf{B}\right)
$$

$$
\begin{aligned}
& \mathbf{v}_{10}=-i \frac{e}{m_{e} \omega} \mathbf{E}_{10} \\
& \mathbf{B}_{10}=-\frac{i}{\omega} \nabla \times \mathbf{E}_{10}
\end{aligned}
$$

- For ponderomotive force, we had $2^{\text {nd }}$ order E from grad E
- Here we choose component oscillating at 2ω

$$
\begin{gathered}
\frac{\partial \mathbf{v}_{2}}{\partial t}=-i 2 \omega \mathbf{v}_{20}=-\left(\mathbf{v}_{10} \cdot \nabla\right) \mathbf{v}_{10}-\frac{e}{m_{e}} \mathbf{v}_{10} \times \mathbf{B}_{10} \\
\mathbf{v}_{20}=-\frac{i}{2 \omega}\left(\left(\left\{-i \frac{e}{m_{e} \omega} \mathbf{E}_{10}\right\} \cdot \nabla\right)\left\{-i \frac{e}{m_{e} \omega} \mathbf{E}_{10}\right\}+\frac{e}{m_{e}}\left\{-i \frac{e}{m_{e} \omega} \mathbf{E}_{10}\right\} \times\left\{-\frac{i}{\omega} \nabla \times \mathbf{E}_{10}\right\}\right) \\
\mathbf{v}_{20}=\frac{i}{4} \frac{e^{2}}{m_{e}{ }^{2} \omega^{3}} \nabla\left(\mathbf{E}_{10} \cdot \mathbf{E}_{10}\right)
\end{gathered}
$$

Calculate $2^{\text {nd }}$ order current

- This current can be a source term for SH radiation

$$
\begin{array}{lc}
\mathbf{J}_{2}=-e n_{0} \mathbf{v}_{2}-e n_{1} \mathbf{v}_{1} & \mathbf{v}_{10}=-i \frac{e}{m_{e} \omega} \mathbf{E}_{10} \\
\mathbf{v}_{20}=\frac{i}{4} \frac{e^{2}}{m_{e}^{2} \omega^{3}} \nabla\left(\mathbf{E}_{10} \cdot \mathbf{E}_{10}\right) & n_{10}=-\frac{e}{m_{e} \omega^{2}} \frac{\mathbf{E}_{10} \cdot \nabla n_{0}}{\varepsilon_{p}} \\
-e n_{0} \mathbf{v}_{2}=-e n_{0} \frac{i}{4} \frac{e^{2}}{m_{e}^{2} \omega^{3}} \nabla\left(\mathbf{E}_{0} \cdot \mathbf{E}_{0}\right) & \\
-e n_{1} \mathbf{v}_{1}=-e\left\{-\frac{e}{m_{e} \omega^{2}} \frac{\mathbf{E}_{10} \cdot \nabla n_{0}}{\varepsilon_{p}}\right\}\left\{-i \frac{e}{m_{e} \omega} \mathbf{E}_{10}\right\}=-i \frac{e^{3}}{m_{e}^{2} \omega^{3}} \frac{\mathbf{E}_{10}\left(\mathbf{E}_{10} \cdot \nabla n_{0}\right)}{\varepsilon_{p}} \\
\mathbf{J}_{20}=-i \frac{e^{3}}{m_{e}^{2} \omega^{3}}\left(\frac{n_{0}}{4} \nabla\left(\mathbf{E}_{10} \cdot \mathbf{E}_{10}\right)+\frac{\mathbf{E}_{10}\left(\mathbf{E}_{10} \cdot \nabla n_{0}\right)}{\varepsilon_{p}}\right) \begin{array}{l}
\begin{array}{l}
\text { We assumed } \\
\text { plane waves, so } \\
\text { first term }=\mathbf{0}
\end{array}
\end{array}
\end{array}
$$

Properties of the SH signal

- The electric field of the SH is calculated from current
- From wave equation,
$\left(\omega_{2}^{2}-k_{2}^{2} c^{2}+2 i k_{2} \partial_{z}\right) \mathbf{E}_{20}=-i \omega_{2} \frac{\mathbf{J}_{20}}{\varepsilon_{0}} \quad \omega_{2}=2 \omega$
$\partial_{z} \mathbf{E}_{20}=-\frac{\omega_{2}}{2 k_{2}} \frac{\mathbf{J}_{20}}{\varepsilon_{0}} \quad \mathbf{J}_{20}=-i \frac{e^{3}}{m_{e}^{2} \omega^{3}}\left(\frac{n_{0}}{4} \nabla\left(\mathbf{E}_{10} \cdot \mathbf{E}_{10}\right)+\frac{\mathbf{E}_{10}\left(\mathbf{E}_{10} \cdot \nabla n_{0}\right)}{\varepsilon_{p}}\right)$
- SH is the same polarization as the input
- Amplitude is modulated by $E . g r a d n_{\mathrm{e}}$
- For circular polarization in, we get vortex phase out!

$$
\mathbf{E}_{10}\left(\mathbf{E}_{10} \cdot \nabla n_{0}\right)=E_{10}{ }^{2}\left|\nabla n_{0}\right|(\hat{\mathbf{x}} \pm i \hat{\mathbf{y}}) \cdot \hat{\mathbf{r}}=E_{10}{ }^{2}\left|\nabla n_{0}\right|(\cos \theta \pm i \sin \theta) E_{10}{ }^{2}\left|\nabla n_{0}\right| e^{ \pm i \theta}
$$

