13
Mechanisms for the nonlinear
refractive index

C. Durfee PHGN 585
Colorado School of Mines

Several mechanisms can lead to a
nonlinear refractive index

Electronic

e Anharmonic binding potential, fast < fs
Molecular Rotation

e Re-orientation of molecule, ~ ps
Thermal (dn/dT)

¢ Heating of lattice, expansion, slow - ~ ms to sec
lonization

e Free electron density changes index
Semiconductor

e conduction band population changes fast
Relativistic

e Oscillating electron mass shift changes index
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Electronic response

* n,~3x10% cm?/W (e.g. in sapphire)

* Example: for L=10mm, A=0.8um,
We need | =4.2 x 101 W/cm2forB=1
If the spot radius = 1mm, duration 100ps:
max energy = 130m)J

* Note that since potential almost always decreases at
large displacement from the nucleus
— Large amplitude = weaker binding, lower resonance freq
— Therefore n, > 1

Molecular electronic response: induced dipole

* This is the dominant response for anisotropic
molecular liquids and gases

* Electric field aligns molecules on a ps time scale

* Induced dipole: p=aE
— Polarizability a is larger along long axis
— Weaker binding, more response

* Polarizability is a tensor p=a-E
— In molecular coordinates: p=o E X+a E y+o E Z
y oy z z

* Permanent dipole is indep of E




Molecular alignment in the field

* |f applied field is not along an axis, there is a torque
T=pxE
* Use energy instead of force
— For permanent dipole:
U=-pE=-pE -pE For uniaxial molecule
— For induced dipole:

dU:—a”E“dE”—(xlELdEl ElesinG E”=Ec050

_ 1 2 1 2 _ 2 2 )
U——Eoc“E|| _EOCLEL =-F (a”cos 9+Oclsm 9)
1 1
U:——aLEZ——(a“—(xL)EzcosZG When o>,
2 2 U is minimized for 6=0

Nonlinear refractive index for molecular gas

* Refractive index built on dipole response
n’=1+y=1+N(a)
* We have to average over all molecular orientations

* What is the distribution of angles?
— Boltzmann distribution: g U/4"
— Averaging over distribution:

[r(6)e " ag
<f(9)>= J‘e—u(e)/kT do
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Thermal averaged molecular response

Get thermal average for induced dipole

Angle-dependent energy:
— Let U(@)Z—]COSZOkT

- with 4 _
]:£(a3—a1)E2/kT

— Use time averaged E?, since molecule can’t respond during
one cycle

* Function to average:

f(O):oc(e):(a3 cos’0+a, sin2t9):oc1 +(oc3 —al)cosze

cos?0e " cos0do
<OC(9)>=OC1+(OC3—051)‘[ J'er(e)/kT 4o

n, calculation for molecular response

For very low intensity (J~0), <cos?6>=1/3

For nonlinear response (higher intensity) get 1t

order in intensity 2
(3):£NM

TR e

Note that there has to be time for response and
thermalization

)

shorter timescales: “impulsive Raman response’
— delay in response
— oscillations in refractive index
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Thermal NL effects

Due to linear absorption the laser can heat the
medium

— Laser pumping in a crystal
— high average power propagation in low-absorption medium
Absorption leads to a temperature gradient
Refractive index depends on temperature
n(T):n0+j—;T(r)
— dn/dT is typically positive, sometimes <0
— Results from lattice (or gas) expansion

Establishing a thermal distribution

Heat equation

(poc)a_T_KVZTZQ:O{I(I‘) po = mass density

ot K = thermal conductivity
Q = heat source distribution

Estimate time response: scale equation

(pOC)gwcé —>sz7°CR2

C = specific heat

Typically ~ 1 sec for macroscopic beams ~mm

Note: dn/dT, C, and k all depend on temperature
— Cryo cooling reduces thermal effects dramatically
— Smaller thermal gradient, faster cooling response
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Thermal lensing

T(r) leads to n(r), which leads to a lensing effect

Assume steady state (CW or averaged over many

shots) VT al(r) _ ocloe‘zrz/woz

— Approximation:

AT ol
Kk— =al —AT~—w]
w; K

o
_dn ~| a2
An=grAT (dT o JIO Effective n,

Other contributions:
— Bowing out of crystal surfaces, stress birefringence

Plasma frequency

The plasma frequency is the fundamental collective
oscillation

Consider a cube of plasma (number density n_) with
fixed ion background

— Displace the electrons by dx —

— Calculate surface charge

— Use Gauss’ law to calculate restoring force

— Then calculate oscillation frequency
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Plasma frequency

* The plasma frequency is the fundamental collective
oscillation

 Consider a cube of plasma (number density n_) with
fixed ion background
— Displace the electrons by +dx J
— Use Gauss’ law to calculate field and restoring force

* Gaussian pill box on one side

SOJ‘E'dS =-¢g EA= J(—ene)dV =—en Adx

* Equation of motion: , o2 2

. . en
F=—eE=—-¢ X=mx S X=— £ x
80 gome
— Oscillation frequency n e
W' =—=
P em

Maxwell’s equations in a plasma

* All charges are free. Maxwell’s equations:

e,V-E=Zen —en, V.B=0
VxE=-B VxB:uO(]+£0E)
* Current

J=qnu=~Zenu —en u
1 1 e e

J= —en u If only electrons are moving

* Charge continuity equation

aar;e +V'(n€u)=0
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The force equation and convective derivative

* Equation of motion for a single particle:

meZ—‘t,:q(E+v><B)

* For a fluid, multiply by n.:

meneZ—?zqne(E+uxB)

* We want a fixed reference frame in space, so to
account for the flow, we can write this total
derivativeas d 9 odx 0

—_——
dt ot ot ox
* Orin3D: izﬁﬂl.v
dt ot
—mn a—u+(u-V)u =qgn (E+u><B)
e e at e

Alternate derivation of plasma frequency

* A plasma oscillation is purely electrostatic B=0

* Assume Z=1, and 1D motion in x direction
VxE=-B=0

v Jv on, 9 oF
mn (—+va—J:—eneE % +a—x(nev)=0 £ —:e(n —-n

mn (—u+(u-V)uj=qneE aante+V-(neu)=O e,V-E=Zen —en,
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Linearization of the equations

Linearize the equations (15t order perturbation)

n =n +n v=v, +v, E=E +E, n=n +n,
* Assume unperturbed plasma is uniform, at rest
on  dv. OE

Vn=0 v=0 E=0 Z0_"0_""0_ n=n, n.=0
0 0 0 at at at_ i 0 il

av 9 1 e on 0 aE
hadY Z -—°E _ _
5%t -+ ox m 8t1+8_x(n v, +nv, )—0 z-:oa—x——en1

Input field varies sinusoidally, so does v,, n,
— Note this is a longitudinal wave osc and k in x-direction

E E (kx wt)

i(kx—wt) A

_ i(kx—wt)
X nl = nle

V1 = V1€

Solution for plasma oscillation frequency

Evaluate derivatives

. e
—-lov, =——E — : - : —_
1 m 1 1wn1+1kn0v1—0 IkeoEl— en

e

Eliminate E; and n,

ke ke ne
n =—i—2E kn0v1=wn1:—1w—E —E =i—"—v,
e e E,0
: e e .ne
—iov,=——E =——i——v,
m, m\ &
 End up with plasma frequency ¢ 2="%°
Pem
— Note that 0 e
ke
v, =—I E, n ——1—E vy, n; 90° out of phase with E
m @ !
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EM waves in a free electron, unmagnetized plasma

* Here we are looking for propagating transverse EM
waves

E =0
Vn0=0 v,=0 0 %:%:%:0 n=n, n =0
B,=0 at ot ot ’ ’

| 1[), &
VXB1:“030(8_:+E1J:C_2[£_1+E1]

0

* Take time derivative of 15t egn
valziz[’_m;l]

C 80

© 80

VxVxEl:V(V-El)—VzElz—VxBl:—%[l—lﬂélj

EM waves in a free electron gas

- - 1(J,
* From previous slide: V(V-El)_WEl:__[]_urEl]

2
c\ &,

* Assume plane waves of form exp[i(k-r—wt)]
k(k-E )+KE, ——| —i L, ’E
- ( : 1)+ =T —za)g—o—w .

* We are looking for transverse waves k-E=0

L

&

— Note that J, can be a source for an EM wave E,

(a)z—kzcz)E1 =—iw
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Dispersion of a free electron gas

For high frequency waves, only electrons are moving

]1 =-nev,

This velocity is driven by the E-field

dv . e e ne
—1__¢E —iov, =—E J].=—ne E =—20
L ek, 1 1 1 ;

dt m, im®

Put this into wave equation:

2
] w| ne ne
(@*-Kc?)E, =—io =+ =—i—| ——"—E, |=—"—E, =0’k
g, £\ imo

Finally we have the dispersion relation

2 2 2 2 2

0° =0’ +k*? , 0, o O, o o
P k"= PR e I

C c C C w

Cutoff frequency
Critical density

2

. . w EMm
* Refractive index pn=,/1-—2 n=1-—t N =—0c¢
w Ncr cr e

w 2
* For w<wp n=i—~ 1_(1)_ Take +'ve root for energy

2 .
0] 0} conservation
N >N_ b

=

8]

* And wave is exponentially damped (reflected)

i{ kynz— (0) ) wZ . @ wz 4
e(ko wt):exp ———F 1——22—th =exp| ——% 1——ZZ—I(Dt
c o (08 ¢ ®,

* 1/coefficient of z is the skin depth

* For low frequency waves, electrons can move to
shield out E-field from conductor
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Dispersive propagation in plasma

For high frequency waves (plasma is “underdense”)

wZ
n= 1——’2’ <1
D) 2)1/2

Phase velocityis>c: V >c

_a)_
ph

S |
Il
a
/N
[S=y
|
8‘8
N [

2

do »

For low electron density, we often approximate:

2 2
n= 1—& z]_— a)p =1_L
" o 20° 2N,

. +1/
L dk ) 0 )"
But group velocity is < c: vV, = =c|1-—2% <c

lonization defocusing

* Refractive index for a free electron gas

) ? 5 Nee2
n“=1-—=L w,= Plasma frequency

wZ eom

]

— Plasmais transparent for @ > o
— Alternative representation:

e m w?
= 0 e

e

N
nf=1-—=

Critical density
e

cr
* As laser ionizes medium, increase in N, decreases n
— Leads to a defocusing effect if beam is peaked in center
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lonization mechanisms

* Optical field ionization
— Multiphoton ionization: dN_/dt ~ I™ where m = U, /hv

on

— Tunneling ionization: strong E-field suppresses binding
potential. Bound electron can tunnel through barrier

* Avalanche ionization
— Seed electron is heated in field
— Collisional ionization frees more electron
— Exponential build up

The ponderomotive potential

* Consider a free electron responding to an EM wave
dv &
med—t1=—eE1 E, :El(x,y)cos(kzz—a)t)x
v =—iIE dt=—2—F (x,y)sin(k z—wt)f(
1 me 1 mew 1 z

* Calculate the time-averaged KE:

<1mv2>:< £l EZ(Xy)sinz(kz—a)t)>= ° EZ(X)’)
2 ') \2mo® VY : 4maw® N\

* This is the ponderomotive potential

ezEl2 Field energy is put into coherent KE of the
= electrons: High intensity leads to a greater
potential energy

U,= 2
L 4m @

3/19/17
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Scaling of the ponderomotive potential

* In terms of intensity: I:%neocElz

e’E*? e’ r?
— 1 _ _ e
1

I

1

U

P 4mea)2 4meczk2 ing c 2nnc

1 2 . .
- e classical electron radius
e 47[80 mecz =2.82x101>* m

* For numerical estimates:

_ ~14 2 Intensity in W/cm?2
Up ~9x10 11)' ev Wavelength in microns

The ponderomotive force

* If we treat U, as a potential, then we expect a force
when there is a gradient of U,

eZ

_ _ 2

F=-VU,=-— wZV(El)

* Forintensity gradient along the polarization
direction, electron moves farther downhill than it

returns.

* But force is actually independent of polarization
direction.
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Derivation of the ponderomotive force

* First order response

\ =—ﬁEm sin(a)t)z cz;;; or, = ¢ -E,, cos(a)t)

mew
15t order velocity 1st order amplitude
* Expand equations to second order (at z=0)
dhoo0

E(r) zEl(r0)+6r1 .VE,|

* Need to add a term to the force equation:
VxE=-B

v1><B1

1
—B,=——VXE |

sinwt

r=r,

0}
e . 1 . e 2
v XB, :(—me—wE10 sm(a)t)]x(—EVxElo smwtj:wmeVwasm ot

Derivation of the ponderomotive force

 Evaluate 2" order of force equation

e -2
\"% =
m, dt:_e(E+VXB) v XB, mszloxVwasm ot

Ez(re)=5r1.VEmcosa)t 51.1:@[;10(;05(&”)
= WEH) cos(a)t)VElO cosmt

_ e 2 e - 9
meavz——e[m e E10~VE10cos a)t+m e EloxVxElosln a)t]
* Time average

2

d _\ € e )
m (v, )= wz(ElO-VE10+Ew><V><E10)——4 VE

2 10

3/19/17
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SHG as a diagnostic of gradients in
plasma density and E-fields

A second-harmonic signal can arise in an initally isotropic medium when
the symmetry is broken
- Third-order response with quasi-DC field (from charge separation)

P(Za)) = Xa(g) (2w)E(w)[EDC E(w)]+ me (zw)EDC|E(w)|2
- Gradient in the electron density
3
. e

Example: conventionally focused pulses, the density gradient follows the
Gaussian focus: leads to SH signal with lobes:

CF-PX

ke ()

Gradient points radially outwards
E-field is linearly polarized

Bethune PRA 23 3139 (1981)
Li et al, OptLett 39, 961 (2014)

Second harmonic generation in non-uniform plasmas

» Starting equations

(G (e9)v | afmrex) Geevfnv)-o

VxE=-B EOV-Eze(ni—ne) VXB:;LO(]+£0E) V-B=0

* Expand variables in a perturbation series
n=n+n-+n+- V=V +Vv, +-- J=] +] +-

* We're looking for the current that drives SH
J,=—enyv, J,=—env —enyv,

— So we need to expand velocity to 2" order

3/19/17
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First order solutions

Similar to derivation of EM wave in plasma

Assume harmonic waves (no assumption on

polarization)

E=E ei(kzr—wt)
0

i(klr—wt) i(
+C.C. V1=V10€ +C.C. n =n e

1 10

k«r—wt)

— For simplicity, we will assume no gradients in E, B (plane
wave) VxE=-B=iwB

Solve for 1t order velocity
avl —
me£$+W}—q(E+%ﬁ)

iv — iy e &) _ _C g pitkran >V =—i—FE
1 10 0
ot m m

e

rCLes

First order solutions

Solve for 1t order density variation

on _.e
a—t1+V-(n0V1)=0 v10__lme_wEo
@
—ion_+V-{nv |=—ion_+V:n|-i—E_ |[[=0
10 ( 0 10) 10 ( 0[ m 0]]
e
nloz_mwzv'(noEo)

Gauss’ law  &V-E=e(n—n )=—en,

Note that we have two expressions for n,,

3/19/17
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Connect charge perturbation to density gradient

* From previous slide:

e e
VE=-n, nm:—msz-(nOEo)
0 e
* Expand div term:
e’ e’
V'E:Somewzvl(noEo)zgomewz (nOV~E0+E0-VnO)
* GatherdiyEterms , )
e’n en ()
V.E-— Y VE=—YE Vn i
* gmo? " gmo’® ® ° gmo’ o
2 E -V
V.E =—2F — "Zo:_i 10 e E -Vn
gm0 g n, —
o’ ¢ ’
Calculate 2" order velocity
* From Lorentz equation v =——i—° E
10 mao 10
ov ¢
2 . — i
me[ o +(v1 V)vl] e(E{+v1><B) BIOZ_éVXElo

— For ponderomotive force, we had 2" order E from grad E
— Here we choose component oscillating at 2w

ov ) e
—tz=—12a)v20=—(v10~V)v10—;v10><B10
I . e . e e . e i
VZO=_%(({_IEEM}'V]{_lmElo}—i_;{_lm—wEw}X{_EVXEN}]
i e v
Vao _Zm 203 (EIO 'Elo)

3/19/17
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Calculate 2" order current

* This current can be a source term for SH radiation

] v i—2E
=—env,—env =—i—
2 0 2 11 10 mew 10
P2 E _-Vn
1 e e 10 0
\% = V(E E ) nloz_ 2
20 2 3 10 10
4 me (0] mew gp
¢ V(g E
—env._=—en — ( 0 )
0" 2 4 m 2w 0 o
e
e E, Vno e e’ Em(Em'Vno)
—éenyv,=—éy— 2 = E10 =Tl
mea) & mea) m- - €p

plane waves, so

Ew(E10 -Vno)} We assumed
firstterm =0

P

Properties of the SH signal

* The electric field of the SH is calculated from current
— From wave equation,

]20

(6022 _](22(;2 +2ik2 aZ)Ezo = _ia)zg_ w,= 20
0
* |n E (E_-Vn
9 =—22ln ), =—i——s _OV(EN.EN)JFM
2k g, m'w’| 4 e,

* SH is the same polarization as the input
* Amplitude is modulated by E.grad n,

— For circular polarization in, we get vortex phase out!

+i6
e i

Ew(E10 ~Vn0)= sz‘Vn0 (f(iifl)'f' = E102|Vn0|(c059iisinB)sz|Vn0
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