
Reading assignment

Schroeder, sections 1.5 and 1.6. This is the last of the material
from chapter 1 that we will cover.



Recap of lecture 1

• Equilibrium states of macroscopic amounts of matter are
characterized by a small number of macroscopic properties,
such as energy, entropy, volume, number of particles,
temperature, and pressure.

• Thermodynamics deals purely with the macroscopic aspects
of systems in equilibrium states. Entropy is mysterious.

• Statistical mechanics applies statistical methods to the
microscopic aspects of systems to derive their macroscopic
properties. It provides a clear definition of entropy and a
foundation for thermodynamics.

• Toy system: ideal gas—noninteracting particles.
PV = NkT .



Recap of lecture 1

• Using a kinetic model for pressure in a monatomic ideal
gas, we found that PV and the mean kinetic energy are
related; this leads, via the ideal gas law, to a relation
between the mean kinetic energy and the temperature:
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Energy

Equipartition theorem

We found that for the monatomic ideal gas
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where i = x, y, or z.

The total energy is then

U = N × 1
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That is, each direction of motion of each particle contributes,
on average, 1

2kT to the total energy of the system.

This turns out to be an instance of a more general feature of all
classical mechanical systems:



Energy

Equipartition theorem

Theorem
In a classical system, each quadratic degree of freedom
contributes 1

2kT to the total energy.
In other words, every generalized coordinate or momentum that
appears quadratically in the Hamiltonian function of the system
contributes 1

2kT to the total energy.

The proof requires some machinery that we haven’t developed
yet, so we’ll defer the proof until later in the semester.



Energy

Identifying quadratic degrees of freedom

Some examples of Hamiltonians with quadratic coordinates or
momenta:
• Free point particle:
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(3 degrees of freedom)

• Simple harmonic oscillator:
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• Dumbbell (or any rigid body):
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Energy

Quantum effects

The equipartition theorem applies to classical systems, for
which the separation between energies is zero—there’s a
continuous range of allowed energies of the system.

In quantum systems that isn’t true. Suppose the energy
required to excite a particular degree of freedom (viewed as a
subsystem) from the ground state is ∆E. Then:
• If kT � ∆E, there is very low probability of excitation,

since very few of the other subsystems have sufficient
energy to donate for the excitation. Thus, that degree of
freedom is frozen out—it doesn’t store a significant portion
of the energy of the whole system.

• If kT � ∆E, the equipartition theorem can be applied
safely.



Energy

Diatomic gases

A diatomic molecule is similar to a dumbbell with a spring
instead of a rigid connecting rod. Since the atoms can vibrate
in and out like a simple oscillator, there should be 2 vibrational
degrees of freedom of the oscillator plus the 6 translational and
rotational degrees of freedom of the dumbbell, for a total of 8.

Experimentally, one finds that the total energy of a diatomic
gas is less than 8N × 1

2kT , and the reason is quantum freeze-out
of some degrees of freedom.

Rotational degrees of freedom contribute terms to the
Hamiltonian that are of the form

L2

2I
,

for which the quantized eigenenergies are

}2l(l + 1)

2I
.



Energy

Diatomic gases

The excitation energy from the ground state with l = 0 to the
l = 1 state is:

∆E =
}2

I
,

which becomes large when the moment of inertia is small. That
is always the case for rotation about the bond axis, so that
rotational degree of freedom is never observed.

The other two principal axes of inertia, perpendicular to the
bond, have much larger moments, so they are excited thermally.
For common diatomic gases such as O2 and Cl2,

}2

Ik
= O(2 K) ,

well below the temperatures at which they become gaseous.



Energy

Diatomic gases

The energy of a quantum harmonic oscillator is(
n + 1

2

)
}ω ,

so the excitation energy is

∆E = }ω .

For common gases O2 and Cl2,

}ω

k
= O(few thousand K) .

So their vibrational degrees of freedom are frozen out at room
temperature.

Thus, each molecule of a gas of identical diatomic molecules has
just 5 degrees of freedom at room temperature, each of which
holds an average of 1

2kT of energy.



Energy

The first law of thermodynamics

∆U = Q + W

That is, the change in energy of a system is the sum of the heat
transferred into it and the work done on it. This is just a
statement of the law of conservation of energy.

Thus heat is defined as the energy transferred to a system by
means that are neither mechanical nor electromagnetic.

Once the energy has been changed by either means, there is no
way to discover by examining the state of the system whether
the energy change was due to heat transfer or work. Neither
heat nor work is a characteristic of the state of the
system—they merely describe mechanisms by which the energy,
which is a characteristic of the system, can be altered.



Energy

Homework

HW Problem
Schroeder problem 1.26, p. 19.

HW Problem
Schroeder problem 1.28, p. 20.
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