Homework \#1 Solution:

1. We have the following augmented matrix representation of (1) and (2),

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
a & b & f \\
c & d & g
\end{array}\right] } \sim_{R 1=a R 2-c R 1}^{R 1=d R 1-b R 2}\left[\begin{array}{cc|c}
a d-c b & b d-d b & d f-b g \\
a c-c a & a d-c b & d g-c f
\end{array}\right]= \\
&={ }^{(\star)}\left[\begin{array}{cc|c}
a d-c b & 0 & d f-b g \\
0 & a d-c b & a g-c f
\end{array}\right] \sim_{R 1=R 1 /(a d-c b)}^{R 2=R 2 /(a d-c b)}\left[\begin{array}{cc|c}
1 & 0 & \frac{d f-b g}{a d-c b} \\
0 & 1 & \frac{a g-c f}{a d-c b}
\end{array}\right]
\end{aligned}
$$

which is equivalent to the linear system,

$$
1 \cdot x_{1}+0 \cdot x_{2}=x_{1}=\text { fracdf }-b g a d-c b
$$

$$
0 \cdot x_{1}+1 \cdot x_{2}=\frac{a g-c f}{a d-c b}
$$

Note, to do the division at (\star) we have assumed that

$$
a d-b c \neq 0
$$

This is a common statement which places restriction on a,b,c,d.
2. We begin by writing the 3 linear equations as the augmented matrix,

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
6 & 18 & 1 & 20 \\
-1 & -3 & 8 & 4 \\
5 & 15 & -9 & 11
\end{array}\right] \begin{array}{l}
R 1 \rightarrow R 3 \\
R 3 \rightarrow R 2 \\
R 2 \rightarrow R 1
\end{array} \sim\left[\begin{array}{ccc|c}
-1 & -3 & 8 & 4 \\
5 & 15 & -9 & 11 \\
6 & 18 & -4 & 20
\end{array}\right] \sim } \\
\sim & \begin{array}{c}
R 2=5 R 1+R 2 \\
R 3=6 R 1+R 3
\end{array}\left[\begin{array}{ccc|c}
-1 & -3 & 8 \\
0 & 0 & 40-9 & 4 \\
0 & 0 & 44 & 11+20 \\
44
\end{array}\right] \begin{array}{c}
\substack{R 3=R 3 / 44 \\
R 2=R 2 / 44} \\
\sim
\end{array} \\
\sim & R 1=-R 1\left[\begin{array}{ccc|c}
1 & 3 & -8 & -4 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \sim R 3=R 3+R 2\left[\begin{array}{lll|l}
1 & 3 & 8 & 4 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \sim \\
\sim & R 1=R 1+8 R 2\left[\begin{array}{ccc|c}
1 & 3 & 0 & 4 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Which corresponds to the row equivalent linear system,

$$
\begin{gathered}
x_{1}+3 x_{2}=4 \\
x_{3}=1
\end{gathered}
$$

Letting $x_{2}=t$ implies that the general solution set is given by,

$$
(\star)=\begin{aligned}
& x_{1}=-3 t+4 \\
& x_{2}=t \\
& x_{3}=1
\end{aligned}, \quad t \in \Re
$$

With x_{1} dependent on the one free variable x_{2}
(\star) parameterizes a 2-D line in 3-D space
3. We have the polynomial

$$
p(t)=a_{0}+a_{1} t+a_{2} t^{2}
$$

and the data points $(1,12),(2,15),(3,16)^{(*)}$. This generates 3 linear equations

$$
\begin{aligned}
p(1) & =a_{0}+a_{1}+a_{2}=12 \\
p(2) & =a_{0}+2 a_{1}+4 a_{2}=15 \\
p(3) & =a_{0}+3 a_{1}+9 a_{2}=16
\end{aligned}
$$

and the corresponding augmented matrix.

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & 1 & 1 & 12 \\
1 & 2 & 4 & 15 \\
1 & 3 & 9 & 16
\end{array}\right] \underset{\substack{R=R 2-R 1 \\
R 2=R 2-R 1}}{\sim}\left[\begin{array}{lll|c}
1 & 1 & 1 & 12 \\
0 & 1 & 3 & 3 \\
0 & 2 & 8 & 4
\end{array}\right] \sim} \\
& \sim^{R 3=R 3-2 R 2}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 12 \\
0 & 1 & 3 & 3 \\
0 & 0 & 2 & -2
\end{array}\right] \sim^{R 3=R 3 / 2}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 12 \\
0 & 1 & 3 & 3 \\
0 & 0 & 1 & -1
\end{array}\right] \sim \\
& \sim_{R 2=R 2-3 R 3}^{R 1=R 1-R 3}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 13 \\
0 & 1 & 0 & 6 \\
0 & 0 & 1 & -1
\end{array}\right] \sim^{R 1=R 1-R 2}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & 6 \\
0 & 0 & 1 & -1
\end{array}\right] \sim
\end{aligned}
$$

The row equivalent linear system is then,

$$
\begin{aligned}
& a_{0}=7 \\
& a_{1}=6 \\
& a_{2}=-1
\end{aligned}
$$

which implies that $p(t)=7+6 t-t^{2}$ is the quadratic polynomial which indicates (*).
4.

$$
\left[\begin{array}{ll|l}
1 & 3 & 2 \\
3 & h & k
\end{array}\right] \sim^{R 3=R 3-3 R 1}\left[\begin{array}{cc|c}
1 & 3 & 2 \\
0 & h-9 & k-6
\end{array}\right]
$$

corresponds to the linear system

$$
\begin{array}{r}
x_{1}+3 x_{2}=2 \\
(h-9) x_{2}=k-6
\end{array}
$$

a) For this system to be consistent with a unique solution,

$$
(h-9) x_{2}=k-6 \Rightarrow x_{2}=\frac{k-6}{h-9}, \text { assuming } h-9 \neq 0
$$

thus $h-9 \neq 0 \Rightarrow h \neq 9$ will yield no free variables and the linear system is consistent with a unique point of intersection of the two lines.
b) For infinitely many solutions (for x_{2} to be a free variable) we require that

$$
(h-9) x_{2}=k-6 \Leftrightarrow 0 \cdot x_{2}=0 \Rightarrow h=9, k=6
$$

Thus x_{2} is free.
c. For no solutions we require,

$$
(h-9) x_{2}=k-6 \Leftrightarrow 0 \cdot x_{2}=c, c \in \Re, c \neq 0
$$

This implies that $h=9$ and $k \neq 6$. Thus the augmented column is a pivot column and the system has no solutions.
5. If $\vec{b}=\left[\begin{array}{c}22 \\ 20 \\ 15\end{array}\right]$ is a linear combination of the vectors, $\vec{a}_{1}=\left[\begin{array}{c}5 \\ -4 \\ 9\end{array}\right]$, $\vec{a}_{2}=\left[\begin{array}{c}3 \\ 7 \\ -2\end{array}\right]$ formed from the columns of $A=\left[\begin{array}{cc}5 & 3 \\ -4 & 7 \\ 9 & -2\end{array}\right]$ then there must exist $x_{1}, x_{2} \in \Re$ such that

$$
\vec{a}_{1} \cdot x_{1}+\vec{a}_{2} \cdot x_{2}=\vec{b} \Leftrightarrow \begin{aligned}
& 5 x_{1}+3 x_{2}=22 \\
& -4 x_{1}+7 x_{2}=20 \\
& 9 x_{1}-2 x_{2}=15
\end{aligned}
$$

To determine if this is true we row reduce the augmented matrix,

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
5 & 3 & 22 \\
-4 & 7 & 20 \\
9 & -2 & 15
\end{array}\right] \underset{\sim}{\sim} \sim_{R 2=5 R 2+4 R 1}^{R 3=5 R 3-9 R 1}\left[\begin{array}{cc|c}
5 & 3 & 22 \\
0 & 47 & 188 \\
0 & -37 & -123
\end{array}\right] \sim} \\
& \sim^{R 3=47 R 3+37 R 2}\left[\begin{array}{cc|c}
5 & 3 & 22 \\
0 & 47 & 188 \\
0 & 0 & 1175
\end{array}\right]
\end{aligned}
$$

which corresponds to the linear system,

$$
\begin{align*}
& 5 x_{1}+3 x_{2}=22 \\
& 47 x_{2}=188 \\
& 0 \cdot x_{2}=1175
\end{align*}
$$

There is no x_{2} such that (\star) can be satisfied. Thus, the linear system is inconsistent and \vec{b} is not a linear combination of \vec{a}_{1} and \vec{a}_{2}.

