Error Analysis in brief

“It is a well established fact of scientific investigation that the first time

an experiment is performed the results often bear all too little resemblance

to the “truth” being sought.

()

Whatever the reason, it is certainly true that for all physical experiments, errors
and uncertainties exist that must be reduced by improved experimental
techniques and repeated measurements, and that these errors must always
be estimated to establish the validity of our results.”

P.R.Bevington and D.K.Robinson,
Data Reduction and Error Analysis for
the physical sciences.




Precision VS Accuracy

FIGURE 1.1
Illustration of the difference between precision and accuracy. (a) Precise but inaccurate data.

(b) Accurate but imprecise data. True values are represented by the straight lines.



Errors affecting
Accuracy and Precision

Accuracy:
depends on systematic errors.

These errors make our results different from the true values with
reproducible discrepancy.
- difficult to detect and to estimate
- usually determined when another experiment with a different
method measures the same property.
example: calibration error in equipment used.

Precision:
depends on random errors.
Random errors are the fluctuations in observations that yield results that
differ from experiment to experiment and that require repeated
experimentation to yield precise results.
—> Statistical distributions




Statistics of Measurements

If we make a measurement x, of a quantity X, we expect our observation to
approximate the quantity, but we do not expect the experimental data point

to be exactly equal to the quantity. Making more and more measurements, a
pattern will emerge, grouped around the true value. This pattern can usually
be described by a Gaussian Distribution around a mean value . X _
If there are no systematical errors (or if we can correct for them),  should X
become the true value X for an infinite number of measurements.
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Dispersion of the observation - Standard deviation o (sigma)
good measure for statistical error of a measurement.




Standard Deviation
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However, you will often found that s2 is replaced by o2, especially when N>>1



- The Gaussian distribution is widely used in statistical

analysis of data, as it seems to describe the distribution
of random observations for many experiments, as well
as describing the distribution obtained when we try to
estimate the parameters of most other probability
distributions.

Probability function for Gaussian Distribution at X:
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where x j is the predicted value of x;

How to proceed: - make measurements
- plot measurements
- fit with Gaussian Distribution
- X or 4 give measured value
- 0 gives statistical error




FWHM: Full Width Half Maximum

In practice, one need to determine o “experimentally” from a set
of data (measurements).
Easy way to do it: FWHM (Full Width at Half Maximum).

From FWHM, one can deduce the o of the given distribution that fits the data best.

As, most of the time, one can fit the data with a Gaussian distribution
> FWHM=T =2354 .0
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Figure 4-5_ Definition of detector resolution. For peaks whose shape is Gaussian with
standard deviation ¢, the FWHM is given by 2.350.



A word on the binomial distribution

Example: Coin tosses “Heads” or “Tails”

Number of different possible combinations of n tosses giving x times
the results “Heads”:

The coins are indiscernible "\ How to get x “Heads”

from n tosses.

Probability: p = “Heads”; g = “Tails”
with: p+q=1, because there is 100% chance that a given coin
toss will result in “Heads” or “Tails”

P(x,n,p) = C(nx).p".q"" = C(n,x).p".(1-p)"
One can show that:

Mean: i =np
Standard Deviation: a2 = np(1-p)

Application: p=0g=0.5 (cointoss) = u=n/2; 0?>=n/4



Poisson Distribution

In a given experiment, we need to evaluate our statistical uncertainties.

We have plenty of events: n>>1 and plenty of possibilities: p<<1, which

oo

also means that n>>p=np (see binomial distribution). el

2__ P = 1
i=1

Problem: one cannot solve the problem exactly because all the p; are usually
not known. Fortunately, one can make approximations:
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With (most importantly): o°=p > o= p ' = i

Number of Counts per 15 Seconds

FIGURE 2.4

Histogram of counts in a cosmic ray detector. The Poisson distribution, shown as a continuous
curve, is an estimate of the parent distribution based on the measured mean X = 11.48. Only the
circled calculated points are defined.



Application
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- : well the statistical error e.g. the
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events in each bin, based on the sample data.



Error Propagation (l)

Instrumental Uncertainties:

If the quantity x has been measured with a physical instrument,
The uncertainty in the measurement generally comes from fluctuations in
readings of the instrumental scale, either because the settings are not
exactly reproducible due to the imperfections in the equipement, or because
of human imprecision in observing settings (mostly a combination of both).

—> Measurements of: length
mass
voltage
current...

We get the uncertainty (~0) by:
- estimate (know your instruments !)
- repeated measurements



Error Propagation (l1)

In determining a certain dependent variable x that is a function of one or
More different measured variables, we need to combine our instrumental
And statistical uncertainties to find the uncertainty of the dependent variable x.

Assuming: x = f(u,v,w)
with 0,0,,0,, independent from each other.
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Special (but common) cases:

x=fuy) > o’
u+v - > o’=0 +0/
u.v > 0.2= ( (o /u)’ + (o v)) . (u.v)’

u/v > 0.2= ((ou)’ + (G /N)?) . (U’



Summing Errors: an example

COMPTON SCATTERING &
(experiment 3) &

<
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E
{88% § c v
1+ (E/m,c)(1 - cos 6)

You measure 8 + d6 and E, + dE, what is the uncertainties on E,, when you
apply the above formula ?

Describe how o, is affected by o, and o, ~
\ ﬁ %\
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Independent errors M



Statistics & Resolution:
Nal VS Germanium detector (l)

As seen before, the resolution of a Germanium detector is better than a Nal detector.
Typically:

Nal: éEE 7% (70 keV @ 1 MeV) Ge: éEE -0.5% (2 keV @ 1 MeV)
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Statistic too low =
fit cannot be trusted !
(Background !)
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Statistics & Resolution:
Nal VS Germanium detector (l)
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The better the resolution, the less number of events one requires to make a
measurement at a given precision...

— make sure you collect an appropriate amount of events before doing
the analysis of your data




Summing “identical” measurements

(See Experiment 2)
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