
PHGN 462 Homework 3 
 
1) There’s a general method for describing the polarization of electromagnetic waves using what are 
called Jones vectors.  We’ll restrict ourselves to describing the electric field in a wave, since once you 
know E and the direction in which the wave is traveling, you can easily find the orientation and 
amplitude of B (at least, I hope you can). 
Let’s say we have an E-field propagating along the z-axis with the form 

ሬԦܧ = ௫݁௜(௞௭ି௪௧ିఝೣ)ଓ̂ܧ + ௬݁௜(௞௭ି௪௧ܧ ೤)ଔ̂ 
Such a form is totally general, and allows for the possibility that the ଓ ̂and ଔ̂ components of the field 
are of different amplitudes and also of different phases with respect to one another.  We can factor out 
the part common to both components and write ܧሬԦ in vector form as follows: 

ሬԦܧ = ݁௜(௞௭ି ) ቆܧ௫݁௜ఝೣ
 ௬݁௜ఝ೤ቇܧ

The term in parentheses has all the information that’s unique to a particular field, showing both the 
component amplitudes and phases.  This term is the Jones vector. 
The Jones vectors for horizontally and vertically polarized light with unit amplitude are ܧሬԦு = ൫ଵ଴൯ and  
ሬԦ௏ܧ = ൫଴ଵ൯, respectively.  This pair defines a simple basis that can be used to express the electric field 
for any wave. 
a)  Consider the E-field whose real part is ܧሬԦ = 7 cos(݇ݖ − (ݐݓ ଓ̂ − 5 sin(݇ݖ − (ݐݓ ଔ̂ (with implied 
units attached to the 7 and 5).  Figure out how to decompose this field in terms of ܧሬԦு  and ܧሬԦ௏.  By that 
I mean find the A and B such that ܧሬԦ = ሬԦுܧܣ +  ሬԦ௏.  You may find it helpful to start by expressingܧܤ
  .ሬԦ in terms of a Jones vector.  And don’t forget that you can use imaginary coefficients if you need toܧ
b)  An alternative basis for describing polarization is referred to as circular polarization.  The basis 
vectors (in Jones notation) are ܧሬԦ௅ = ଵ

√ଶ ൫ଵ௜ ൯ and ܧሬԦோ = ଵ
√ଶ ൫ ଵି௜൯, describing left-circular and right-circular 

polarization respectively. 
Explain, using an appropriate combination of words, equations, and diagrams, why this basis is 
referred to as circular polarization.  It’s no great challenge to find the answer on the interwebs, so 
make sure your explanation is strong and is uniquely your own.  Also mention why those ଵ

√ଶ factors 
are there. 
c)  Express the E-field from part (a) in terms of ܧሬԦ௅ and ܧሬԦோ 
Two things to take away from this problem:  1)  How to express polarization in general and 2) That 
circular polarization, while it sometimes sounds like an odd thing, is just another basis to work in, one 
that happens to come up a lot in optics labs.  
 



2)  We’ve seen plane waves and spherical waves (or will see them very soon), and they’re very nice 
and all, but it’d be really fantastic if there was a more confined solution to the wave equation.  A set 
of fields that traveled along some axis without being infinite in extent.  A beam, if you will.  Might 
such a thing exist? 
 
a)  A beam would have certain properties.  For example, it’d propagate primarily along a single axis, 
in much the same way that a plane wave does.  That means some component of the associated E-field 
would have a form such as: 

,ݔ)ܧ ,ݕ ,ݖ (ݐ = ,ݔ)ݑ ,ݕ  ௜(௞௭ିఠ௧)݁(ݖ
where u is some as-yet-unknown spatial distribution and we’re defining ݇ = ఠ

௖ .     
For a beam, u would probably have certain properties, too.  It’s likely that it’d vary slowly along the 
direction of propagation, barely changing at all on a length scale similar to ߣ.  And its variance in the 
axial direction would be small compared to its variance in transverse directions.  Together those 
features are encoded in the so-called paraxial approximations: 

ቚడమ௨
డ௭మቚ ≪ ቚడమ௨

డ௫మቚ , ቚడమ௨
డ௬మቚ   and  ቚడమ௨

డ௭మቚ ≪ ቚ݇ డ௨
డ௭ቚ 

Using all of the above, show that the field envelope u for a beamlike solution to the wave equation 
will satisfy: 

߲ଶݑ
ଶݔ߲ + ߲ଶݑ

ଶݕ߲ + 2݅݇ ݑ߲
ݖ߲ = 0 

 
b)  The above can be solved in a rather brute force fashion via separation of variables, leading to an 
answer written in terms of Hermite polynomials.  It’s a very long process, though, so I’ll just give you 
the solution: 

ܧ = ௡ܪ௡,௠ܧ ቆ ݔ2√
ቇ(ݖ)ݓ ௠ܪ ቆ ݕ2√

ቇ(ݖ)ݓ ଴ݓ
(ݖ)ݓ ∙ ݁

ି൫௫మା௬మ൯
௪(௭)మ ∙ ݁ି௜ ௞௥మ

ଶோ(௭) ∙ ݁௜(ଵା௡ା௠) ୲ୟ୬షభ ௭௭ೝ ∙ ݁௜(௞௭ିఠ௧) 

where w(z) is the spot size defined by, (ݖ)ݓ = ଴ට1ݓ + ቀ ௭
௭ೝቁଶ, R(z) is the radius of curvature ,          

(ݖ)ܴ = ݖ ቀ1 + ௭ೝమ
௭మቁ, and the constants ݓ଴ and ݖ௥ are called the beam waist and Rayleigh length, 

which are tied together via ݖ௥ = గ௪బమ
ఒ  .௡ is the nth Hermite polynomialܪ  .

 
Each combination of n and m leads to a distinct allowed mode.  (݊, ݉) = (0,0) is what’s known as 
the TEM00 mode, and is the mode in which we frequently try to operate lasers.   
There’s a ton of physics in the above equation, often involving tradeoffs between one beam parameter 
or another.  For example:  Take a look at the mode equation for TEM00 modes and tell me how 



focusing the beam affects collimation of the beam.  That is, if I focus the beam down to a smaller 
waist, does that result in a more or less well-collimated beam?  Explain how you know. 
 
c)  Let’s get a look at these modes by plotting the E-fields in Mathematica (or whatever platform you 
prefer).  Plot xz and xy cross sections of a few different modes and comment on what you see.  For the 
xz modes, show a snapshot at a particular time as opposed to a time average, so we can see the 
oscillations along z.  For the xy cross sections, do as you please.   
Note that you might have some dynamic range issues… the field values involved span enough orders 
of magnitude that Mathematica’s default color mapping will probably wash out some detail.  If it’s 
too washed out to be useful, fix it.  I used a logarithmic color mapping.  The code for that was 
relatively easy to find on the interwebs.   
 
 
 
 
 


