MATH348-Advanced Engineering Mathematics

Homework: Fourier Series - Part II

COMPLEX REPRESENTATION, RESONANT FORCING, BESSEL'S INEQUALITY, PARSEVAL'S IDENTITY

Text: 11.3-11.4 Lecture Notes: 9-10 Lecture Slides: N/A

Quote of Homework Five

Carlos Castaneda: I had not been using my eyes. That was true, yet I was very sure he had said to feel the difference. I brought that point up, but he argued that one can feel with the eyes, when the eyes are not looking right into things.

Carlos Castaneda - The Teachings of Don Juan: A Yaqui Way of Knowledge (1968)

1. Fourier Series: Nonstandard Period

Let
$$f(x) = \begin{cases} 0, & -2 < x < 0 \\ x, & 0 < x < 2 \end{cases}$$
 be such that $f(x+4) = f(x)$.

- 1.1. **Graphing.** Sketch f on (-4,4).
- 1.2. **Symmetry.** Is the function even, odd or neither?
- 1.3. **Integrations.** Determine the Fourier coefficients a_0, a_n, b_n of f.
- 1.4. **Truncation.** Using http://www.tutor-homework.com/grapher.html, or any other graphing tool, graph the first five terms of your Fourier Series Representation of f.
 - 2. Fourier Series: Periodic Extension

Let
$$f(x) = \begin{cases} \frac{2k}{L}x, & 0 < x \le \frac{L}{2} \\ \frac{2k}{L}(L-x), & \frac{L}{2} < x < L \end{cases}$$
.

- 2.1. **Graphing I.** Sketch a graph f on [-2L, 2L].
- 2.2. Graphing II. Sketch a graph f^* , the even periodic extension of f, on [-2L, 2L].
- 2.3. Fourier Series. Calculate the Fourier cosine series for the half-range expansion of f.
 - 3. Complex Fourier Series
- 3.1. Orthogonality Results. Show that $\langle e^{inx}, e^{-imx} \rangle = 2\pi \delta_{nm}$ where $n, m \in \mathbb{Z}$, where $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$.
- 3.2. Fourier Coefficients. Using the previous orthogonality relation find the Fourier coefficients, c_n , for the complex Fourier series, $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$.
- 3.3. Complex Fourier Series Representation. Find the complex Fourier coefficients for $f(x) = x^2$, $-\pi < x < \pi$, $f(x + 2\pi) = f(x)$.
- 3.4. Conversion to Real Fourier Series. Using the complex Fourier series representation of f recover its associated real Fourier series.

4. Periodic Forcing of Simple Harmonic Oscillators

Consider the ODE, which is commonly used to model forced simple harmonic oscillation,

$$(1) y'' + 9y = f(t),$$

(2)
$$f(t) = |t|, -\pi < t < \pi, f(t+2\pi) = f(t).$$

Since the forcing function (2) is a periodic function we can study (1) by expressing f(t) as a Fourier series. ^{1 2}

- 4.1. Fourier Series Representation. Express f(t) as a real Fourier series.
- 4.2. Method of Undetermined Coefficients. The solution to the homogeneous problem associated with (1) is $y_h(t) = c_1 \cos(3t) + c_2 \sin(3t)$, $c_1, c_2 \in \mathbb{R}$. Knowing this, if you were to use the method of undetermined coefficients³ then what would your choice for the particular solution, $y_p(t)$? DO NOT SOLVE FOR THE UNKNOWN CONSTANTS
- 4.3. **Resonant Modes.** What is the particular solution associated with the third Fourier mode of the forcing function?⁴
- 4.4. **Structural Changes.** What is the long term behavior of the solution to (1) subject to (2)? What if the ODE had the form y'' + 4y = f(t)?

5. Error Analysis and Applications

We have that for a reasonable 2π -periodic function there exist coefficients a_0, a_n, b_n such that

(3)
$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx).$$

This is, of course, the Fourier series representation of the function f but, as we know, computational devices are not well-suited to infinite sums. Thus, we would like to know how f is approximated by

(4)
$$f(x) \approx f_N(x) = a_0 + \sum_{n=N}^{\infty} a_n \cos(nx) + b_n \sin(nx),$$

were this N^{th} -partial sum is called a trigonometric polynomial. Since f_N approximates f on an interval, we define our error as

(5)
$$E = \int_{-\pi}^{\pi} (f - f_N)^2 dx,$$

which is called the squared error of f_N .⁵ It can be shown that this squared error can be written as

(6)
$$E = \int_{-\pi}^{\pi} f^2 dx - \pi \left[2a_0^2 + \sum_{n=1}^{N} (a_n^2 + b_n^2) \right].$$

It is plausible that as $\lim_{N\to\infty} f_N = f$ and $E\to 0$. Thus, from (6) we have

(7)
$$2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2 dx,$$

which is called Parseval's identity.⁶

- 5.1. **Application of Mean Square Error.** Let $f(x) = x^2$ for $x \in (-\pi, \pi)$ such that $f(x + 2\pi) = f(x)$. Determine the value of N so that E < 0.001.
- 5.2. **Application of Parseval's identity.** Using the previous function and Parseval's identity show that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

¹The advantage of expressing f(t) as a Fourier series is its validity for any time t. An alternative approach have been to construct a solution over each interval $n\pi < t < (n+1)\pi$ and then piece together the final solution assuming that the solution and its first derivative is continuous at each $t = n\pi$.

²It is worth noting that this concepts are used by structural engineers, a sub-disciple of civil engineering, to study the effects of periodic forcing on buildings and bridges. In fact, this problem originate from a textbook on structural engineering.

³This is also known as the method of the 'lucky guess' in your differential equations text.

⁴Each term in a Fourier series is called a mode. The first mode is sometimes called the fundamental mode. The rest of the modes, called *harmonics* in acoustics, are just referenced by number. The third Fourier mode would be the third term of Fourier summation

⁵ We choose to square the integrand so that there can be no possible cancellation of positive errors/areas with negative errors/areas.

⁶These are the main equations associated with the error analysis of Fourier series. A student interested in the derivations should consult Kreyszig's section 11.4, 9th edition.