
where

σ
(n)
i =

{
+1, antialigned moment
−1, aligned moment .

(103)

The calculation of the partition function requires a sum over all possible
states, which requires enumeration of all possible sets of values of the σi:

Z =
∑
σ1

∑
σ2

· · ·
∑
σN

e−β
P

i σiµB . (104)

You can see that direct evaluation of the sum is quite a daunting task,
particularly if N is a macroscopically large number like 1023.

One way to simplify the sum would be to change it from a sum over
microstates to a sum over energies, using the ability to express the energy in
the simpler form (N↓−N↑)µB together with our previous knowledge of the
multiplicities of the energies (macrostates) of the two-state paramagnet.

It is much simpler to make use of the factorizability of the partition func-
tion. While it is straightforward to demonstrate explicitly the reduction to
factorized form for this system, we’ll just use what we already know: if the
energy decomposes into a sum of independent contributions, the partition
function factors into a product of partition functions that can be calculated
independently for each contribution to the energy. Thus:

Z = Z(1)Z(2) · · ·Z(N) = ZN
1 moment , (105)

where the last equality follows from that fact that all the moments are the
same, so they each have the same individual contribution to the partition
function. That contribution is very easy to calculate:

Z1 moment =
∑

σ

e−βσµB

= eβµB + e−βµB

= 2 cosh(βµB) .

(106)

The full partition function for the system is then simply

Z = ZN
1 moment = [2 cosh(βµB)]N . (107)

[EOC, Fri. 3/31/2006, #32]

There’s one additional complication that we need to consider in some
cases. If the constituents (particles) of the system are indistinguishable,
then the enumeration of the states of the system must take that into ac-
count. In an ideal gas of identical molecules, for example, there is no way to
distinguish the molecules from each other, so a state with any pair of them
interchanged is really no different from the state without that interchange.
But we know how to handle that situation from our previous experience:
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a sum obtained without regard to indistinguishability can be corrected by
dividing by N !, the number of permutations of the particles.

That works so long as the individual particles never occupy the same
state. For example, suppose a two-particle system in which each particle
can be in one of two states and both particles are allowed to be in the
same state. The possible states of that system could be described by the
index pairs (1, 1), (1, 2), (2, 1), and (2, 2) if we assumed the particles to
be distinguishable. For indistinguishable particles, the states (1, 2) and
(2, 1) are really the same, and that double counting could be eliminated by
dividing the count by 2. But the states (1, 1) and (2, 2) were not double
counted in the original enumeration that assumed distinguishable particles,
so dividing the entire count by two would overcorrect, giving two states
rather than the correct number, three. This dilemma is avoided if we limit
ourselves to systems of indistinguishable particles that cannot occupy the
same single-particle states, so that the N ! correction is accurate. The ideal
gas is an example of such a system, since the low density, which is required
in order to consider the particles to be noninteracting, makes the likelihood
of multiple occupancy very low.

By the way, we didn’t have to worry about the correction for the two-
state paramagnet because, even though the moments themselves are indis-
tinguishable, they are presumed to be locked into a crystal lattice whose
sites are distinguishable by their positions. This effectively labels each of
the moments with a unique coordinate triplet.

HW Problem. Schroeder problem 6.44, p. 251.

Reading assignment. Schroeder, section 7.1.

0.1.7 The partition function of the ideal gas

We’ll quantize the translational motion of the constituents of this system
in exactly the same way we did in our calculation of the multiplicity of
the ideal gas long ago. That is, we’ll use periodic boundary conditions to
impose quantization of the allowed translational momenta of the molecules
without actually putting the molecules in a real confining box.1 This gives
us traveling-wave solutions to the Schrödinger equation,

− }2

2m
∇2ψ(r) = Eψ(r) , (108)

that satisfy the periodic boundary conditions

ψ(r + R) = ψ(r) . (109)

Here
R = (nxx̂ + nyŷ + nz ẑ)L , (110)

1Note that Schroeder does the latter, so his calculation is a bit different.
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with L3 = V , the volume of the macroscopic “box,” and the ni are integers,
which may be negative or zero, as well as positive. The solutions are plane
waves,

ψ(r) =
(

1
L

)3/2

eip·r/} , (111)

where the momentum is required to be of the form

p =
h

L
(Kxx̂ +Kyŷ +Kz ẑ) (112)

with integral quantum numbers Ki, in order to satisfy the periodic bound-
ary conditions. Thus, the translational kinetic energy of each particle is

Etr =
p2

2m
=

h2

2mL2
(K2

x +K2
y +K2

z ) . (113)

We will allow the constituents to be polyatomic, so, in addition to the
translational motion, each molecule may also undergo rotational and/or
vibrational motion. For the vibrational motion, the energies are of the
form

Evib =
∑

i

(
ni +

1
2

)
}ωi , (114)

where i indexes the independent modes of vibration of the molecule. And
for the rotational motion, the energies are of the form

Erot =
3∑

i=1

ji(ji + 1)
}2

2Ii
, (115)

where i indexes the three principal axes of inertia of the molecule.
Since the particles of an ideal gas are noninteracting, the total energy of

the gas can then be found by adding contributions from all the molecules:

Etot =
N∑

i=1

Ei =
N∑

i=1

(Etr,i + Erot,i + Evib,i) . (116)

This means the partition function factors, taking the form

Z =
1
N !

ZN
1 , (117)

where Z1 is the partition function of a single molecule, and the factor 1/N !
is needed to account for the indistinguishability of the molecules. Fur-
thermore, the single-molecule partition function factors into translational,
rotational, and vibrational parts:

Z1 = ZtrZrotZvib , (118)
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each of which can be obtained by adding up the corresponding Boltzmann
factors:

Ztr =
∑

Kx,Ky,Kz

e−βEtr(Kx,Ky,Kz)

Zrot =
∑

j1,j2,j3
m1,m2,m3

e−βErot(j1,j2,j3)

Zvib =
∑

n1,n2,...

e−βEvib(n1,n2,... ) .

(119)

There is another contribution as well, coming from the electronic states
of the molecule, or of the atom in a monatomic gas. However, electronic
excitations are generally of much higher energy than rotational and vibra-
tional excitations, hence they are well above kT at typical temperatures,
so that their Boltzmann factors are negligible—they are frozen out. This
means we can usually ignore the corresponding factor Zelect in the single-
molecule partition function unless the ground state is degenerate. In the
latter case, we can take Zelect to be just the multiplicity of the ground state,
Ωgnd.

Now, let’s take a closer look at the translational contributions:

Ztr =
∞∑

Kx=−∞

∞∑
Ky=−∞

∞∑
Kz=−∞

e−βh2(K2
x+K2

y+K2
z )/2mL2

=

( ∞∑
K=−∞

e−βh2K2/2mL2

)3

.

(120)

Even this contribution to Z1 factors into identical contributions from each
dimension, as we should expect, since the energy decomposes into additive
contributions from each dimension.

Recall that L is a macroscopic distance, so that the spacing between
the energies is very small compared to kT = 1/β. This means that for all
but the lowest temperatures, we can approximate the sum by an integral:

Z
1/3
tr ≈

∫ ∞

−∞
e−βh2K2/2mL2

dK

=
∫ ∞

−∞
e−αK2

dK

=
(π
α

)1/2

,

(121)

where

α =
βh2

2mL2
=

h2

2mkTL2
. (122)

Thus, the translational part of the single-molecule partition function is

Ztr =
(

2πmkTL2

h2

)3/2

. (123)
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This is a dimensionless quantity, of course, and it is customary to write it
in terms of the ratio of two lengths:

Ztr =
(
L

`Q

)3

, (124)

where
`Q =

h√
2πmkT

. (125)

To interpret the quantity `Q it is helpful to recall that the quantum-
mechanical deBroglie wavelength of a free particle is

λ =
h

p
=

h√
2mE

, (126)

where p is its momentum, and E is its kinetic energy. Clearly, `Q is of a
similar form, with the product πkT playing the role of the energy. Thus,
it is sometimes called the thermal deBroglie wavelength. Schroeder calls it
the quantum length.

The translational partition function can also be expressed as a ratio of
volumes:

Ztr =
V

vQ
, (127)

where V = L3 is the volume of the macroscopic container, and vQ = `3Q
can be termed the quantum volume. Note well that

`Q � L and vQ � V , (128)

except at very low temperatures or for very small confinement volumes.
Putting all the pieces together, we get the partition function for the

entire gas:

Z =
1
N !

(ZtrZrotZvibZelect)N

=
1
N !

(
V

vQ
Zint

)N

,

(129)

where
Zint = ZrotZvibZelect . (130)

With this, it is now straightforward to calculate the thermodynamic
properties of an ideal gas in thermal contact with a reservoir, just as it was
after we obtained the multiplicity of the isolated ideal gas and from it the
Sackur-Tetrode expression for its entropy. One notable difference is that
we have included internal degrees of freedom here, which we did not do for
the isolated gas.
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The first step in obtaining thermodynamic properties is to find the free
energy:

F = −kT lnZ

= −kT ln

[
1
N !

(
V

vQ
Zint

)N
]

= −kT

[
N

(
ln
V

vQ
+ lnZint

)
− lnN !︸ ︷︷ ︸
≈ N lnN −N

]

≈ −NkT
(

ln
V

vQ
− lnN + 1

)
−kTN lnZint︸ ︷︷ ︸

≡ Fint

.

(131)

Other thermodynamic quantities follow from that.
[EOC, Mon. 4/3/2006, #33; HW10 closed, due Mon. 4/10/2006]

Exercise. Calculate the entropy of an ideal gas from the free energy

F = −NkT
(

ln
V

vQ
− lnN + 1

)
+ Fint . (132)

Don’t try to assume anything about the form of Fint.
Also, show that the Sackur-Tetrode expression for the entropy is recov-

ered for the monatomic ideal gas if the energy is fixed at the mean energy
dictated by the reservoir temperature.

0.1.8 Epilog

It’s worthwhile now to revisit the distinction between the circumstances of
this formalism based on the partition function or the free energy and the
previous formalism based on the multiplicity or the entropy.

• Multiplicity/entropy: The system is isolated, so its energy U is fixed.
The entropy is given by

S = k lnΩ = S(U, V,N) . (141)

The temperature can be obtained from the entropy by differentiation:

T =
(
∂S

∂U

)−1

V,N

, (142)

and other thermodynamic variables can be found by similar means.
The probability of finding the system in a macrostate is

Pmacrostate =
Ωmacrostate

Ωtot
. (143)
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• Partition function/free energy: The system is in thermal contact with
a reservoir that fixes T . The free energy is given by

F = −kT lnZ = U − TS = F (T, V,N) . (144)

The entropy can be obtained from the free energy by differentiation:

S = −
(
∂F

∂T

)
V,N

, (145)

and other thermodynamic variables can be found by similar means.
The probability of finding the system in a microstate is

Pmicrostate =
e−βEn

Z
, (146)

where β = 1/kT .

While it is formally true that these approaches apply to distinct physical
situations, it is often possible to use either for the same system. The energy
of a large system in thermal contact with a reservoir fluctuates very little
about the thermal average dictated by the temperature of the reservoir,
so a suitable choice of T would permit the use of the new formalism to
mimic very closely the thermodynamics of an isolated system having energy
precisely fixed at the average value F + TS. We saw an example of this
when we recovered the Sackur-Tetrode expression for the entropy of an ideal
gas in the last exercise.
[EOC, Wed. 4/5/2006, #34; End of material for Exam II]
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