
Diffractive wave propagation 
Fresnel propagation 

Fraunhofer propagation 

Examples of diffraction 



3D wave propagation 

•  Note:  
–  All linear propagation effects are included in LHS: 

diffraction, interference, focusing… 
–  Previously, we assumed plane waves where transverse 

derivatives are zero.  
•  More general examples:  

–  Gaussian beams (including high-order) 
–  Waveguides 
–  Arbitrary propagation 
–  Can determine discrete solutions to linear equation (e.g. 

Gaussian modes, waveguide modes), then express fields 
in terms of those solutions. 
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Diffractive propagation 
•  Huygens’ principle:  

–  Represent a plane wave as a superposition of source 
points emitting spherical waves 

•  Integral representation:  

E x, y, z( ) = i
λ

E ′x , ′y , ′z( )∫∫
exp −ik r − ′r⎡⎣ ⎤⎦

r − ′r
cosθd ′x d ′y

Field at 
input plane 

Spherical 
wavelet 

Inclination 
factor This is essentially a convolution of the 

complex input field with the spherical 
wavelets, which are the Green’s 
function for the wave equation 



Paraxial, slowly-varying approximations 
•  Assume 

–   waves are forward-propagating: 

–  Refractive index is isotropic 

 
–  Fast oscillating carrier terms cancel (blue) 

•  Slowly-varying envelope: compare red terms 
–  Drop 2nd order deriv if 

–  This ignores: 
•  Changes in z as fast as the wavlength 
•  Counterpropagating waves 
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Fresnel diffraction integral 
•  Fresnel approximation (near field) 

–  Expand the spherical wave in paraxial approximation 
(in exponential) 

–  Let denominator be 
–  Input field: 
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Fraunhofer diffraction integral 

•  In the “far field”, we approximate the sum of 
paraxial spherical waves as a sum of plane waves 
–  Assume field in input plane is confined to a radius a 
–  If    then we drop quadratic phases. 

–  Result: far field is a Fourier transform of the input field 
–  “spatial frequencies”   
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Example: sum of dipole radiators 
•  Add fields from 10 individual sources 

 Near field     far field 

Talbot fringes Diffraction grating 



High-density of radiators 
•  Combine 50 sources over same distance 

Fresnel zone shows shadow 
boundary, diffraction fringes 

Far field evolves more like a 
beam, with single-slit 
diffraction. 



High density of radiators, Gaussian 
envelope 

•  Gaussian amplitude envelope eliminates 
diffraction fringes 

Beam smoothly spreads 
out with distance 


