


3D wave propagation
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— All linear propagation effects are included in LHS:

diffraction, interference, focusing...

— Previously, we assumed plane waves where transverse

derivatives are zero.

* More general examples:
— Gaussian beams (including high-order)
— Waveguides
— Arbitrary propagation

— Can determine discrete solutions to linear equation (e.g.
Gaussian modes, waveguide modes), then express fields

in terms of those solutions.




Diffractive propagation

* Huygens’ principle:
— Represent a plane wave as a superposition of source
points emitting spherical waves

* |Integra
E(x,y,z)= %J‘

representation:
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Field at Spherical

input plane wavelet

This is essentially a convolution of the
complex input field with the spherical
wavelets, which are the Green’s
function for the wave equation

Inclination
factor




Paraxial, slowly-varying approximations

 Assume
— waves are forward-propagating:
E(r,t)= A(r)ei(kz_wot) +c.c.
— Refractive index is isotropic
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— Fast oscillating carrier terms cancel (blue)

» Slowly-varying envelope: compare red terms
B N .
Drop 2" order deriv if 2—n1A>>i2A
AL L
— This ignores:
« Changes in z as fast as the wavlength 2ikiA+VfA -0
<

« Counterpropagating waves



Fresnel diffraction integral

* Fresnel approximation (near field)

— Expand the spherical wave in paraxial approximation
(in exponential)
=L cosf=1

— Input field: E(x’,y".z")=u(x’,y’,z")e"™ )
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Fraunhofer diffraction integral
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* |n the “far field”, we approximate the sum of
paraxial spherical waves as a sum of plane waves
— Assume field in input plane is confined to a radius a
—If ka® ma’ 1 then we drop quadratic phases.
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— Result: far field is a Fourier transform of the input field

— “spatial frequencies” B = k> = ksin® B, = k= =ksin@
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Example: sum of dipole radiators

 Add fields from 10 individual sources
Near field far field
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High-density of radiators

Combine 50 sources over same distance
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Fresnel zone shows shadow Far field evolves more like a
boundary, diffraction fringes beam, with single-slit

diffraction.



High density of radiators, Gaussian

envelope

« Gaussian amplitude envelope eliminates
diffraction fringes
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Beam smoothly spreads
out with distance



