Diffractive wave propagation

Fresnel propagation
Fraunhofer propagation
Examples of diffraction

3D wave propagation

$$
\nabla^{2} \mathbf{E}-\frac{n_{j}^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}+\nabla_{\perp}{ }^{2} \mathbf{E}-\frac{n(\mathbf{r})^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=0
$$

- Note:

$$
\nabla_{\perp}^{2}=\partial_{x}^{2}+\partial_{y}^{2} \quad \nabla_{\perp}^{2}=\frac{1}{r} \partial_{r}\left(r \partial_{r}\right)+\frac{1}{r^{2}} \partial_{\phi}^{2}
$$

- All linear propagation effects are included in LHS: diffraction, interference, focusing...
- Previously, we assumed plane waves where transverse derivatives are zero.
- More general examples:
- Gaussian beams (including high-order)
- Waveguides
- Arbitrary propagation
- Can determine discrete solutions to linear equation (e.g. Gaussian modes, waveguide modes), then express fields in terms of those solutions.

Diffractive propagation

- Huygens' principle:
- Represent a plane wave as a superposition of source points emitting spherical waves
- Integral representation:

$$
E(x, y, z)=\frac{i}{\lambda} \iint \frac{E\left(x^{\prime}, y^{\prime}, z^{\prime}\right)}{\frac{\exp [-i k \mid \mathbf{r}-\mathbf{r}}{\begin{array}{c}
\text { Field at } \\
\text { input plane }
\end{array}} \frac{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}{\begin{array}{c}
\text { Spherical } \\
\text { wavelet }
\end{array}} . \frac{x^{\prime}}{}}
$$

Inclination factor complex input field with the spherical wavelets, which are the Green's function for the wave equation

Paraxial, slowly-varying approximations

- Assume
- waves are forward-propagating:

$$
\mathbf{E}(\mathbf{r}, t)=\mathbf{A}(\mathbf{r}) e^{i\left(k z-\omega_{0} t\right)}+\text { c.c. }
$$

- Refractive index is isotropic

$$
\frac{\partial^{2}}{\partial z^{2}} \mathbf{A}+2 i k \frac{\partial}{\partial z} \mathbf{A}-k^{2} \mathbf{A}+\nabla_{\perp}{ }^{2} \mathbf{A}+\frac{n^{2} \omega_{0}{ }^{2}}{c^{2}} \mathbf{A}=0
$$

- Fast oscillating carrier terms cancel (blue)
- Slowly-varying envelope: compare red terms
- Drop $2^{\text {nd }}$ order deriv if $\frac{2 \pi}{\lambda} \frac{1}{L} A \gg \frac{1}{L^{2}} A$
- This ignores:
- Changes in z as fast as the wavlength

$$
2 i k \frac{\partial}{\partial z} \mathbf{A}+\nabla_{\perp}{ }^{2} \mathbf{A}=0
$$

- Counterpropagating waves

Fresnel diffraction integral

- Fresnel approximation (near field)
- Expand the spherical wave in paraxial approximation (in exponential)
- Let denominator be $\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \sim z-z^{\prime}=L \quad \cos \theta \simeq 1$
- Input field: $E\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) e^{+i k\left(z-z^{\prime}\right)}$

$$
\begin{aligned}
& u(x, y, z)=\frac{i}{\lambda L} \iint u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \exp \left[-i k \frac{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}{2 L}\right] d x^{\prime} d y^{\prime} \\
& u(x, y, z)=\frac{i}{\lambda L} \mathrm{e}^{-i k \frac{x^{2}+y^{2}}{2 L}} \iint u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \mathrm{e}^{-i k \frac{x^{2}+y^{\prime 2}}{2 L}} \mathrm{e}^{+i \frac{k}{L}\left(x x^{\prime}+y y^{\prime}\right)} d x^{\prime} d y^{\prime}
\end{aligned}
$$

Fraunhofer diffraction integral

$$
u(x, y, z)=\frac{i}{\lambda L} \mathrm{e}^{-i \frac{k^{2}+y^{2}}{2 L}} \iint u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \mathrm{e}^{-i k^{\frac{k^{\prime}}{}+y^{\prime 2}}} 2 L \mathrm{e}^{+\frac{k}{L}\left(x x^{\prime}+y y^{\prime}\right)} d x^{\prime} d y^{\prime}
$$

- In the "far field", we approximate the sum of paraxial spherical waves as a sum of plane waves
- Assume field in input plane is confined to a radius a
- If $\frac{k a^{2}}{2 L}=\frac{\pi a^{2}}{\lambda} \frac{1}{L} \ll 1$ then we drop quadratic phases.
$u(x, y, z)=\frac{i}{\lambda L} \iint u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \exp \left[+i\left(\frac{k x}{L} x^{\prime}+\frac{k y}{L} y^{\prime}\right)\right] d x^{\prime} d y^{\prime}$
- Result: far field is a Fourier transform of the input field
- "spatial frequencies"

$$
\beta_{x}=k \frac{x}{L}=k \sin \theta_{x} \quad \beta_{y}=k \frac{y}{L}=k \sin \theta_{y}
$$

Example: sum of dipole radiators

- Add fields from 10 individual sources

Near field

Talbot fringes
far field

Diffraction grating

High-density of radiators

- Combine 50 sources over same distance

Fresnel zone shows shadow boundary, diffraction fringes

Far field evolves more like a beam, with single-slit diffraction.

High density of radiators, Gaussian envelope

- Gaussian amplitude envelope eliminates diffraction fringes

