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Numerical eigenstates for a two-antidot channel under a magnetic field
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We have calculated the single-particle eigenstates of a system designed to model a two-dimensional channel
obstructed by a pair of anti-dots, under a transverse magnetic field. The model is relevant to recent experiments
in which the conductance of the two-antidot system reveals a conductance minimum which is modulated by
oscillations of aconstant period in a magnetic fieldontrary to the predictions of semiclassical calculations.

We show that the modulations are due to the evolution with applied magnetic field of the eigenstates occupying
the Fermi level, which alternate between cyclotron resonant states and states which are pinched off in the
constricted region between the antidots and the channel edge. The phenomenon is an example of the interplay
of the semiclassical cyclotron behavior and the quantum-mechanical nature of the constrictions.
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The study of electron transport in semiconductor devices The reason the antidot experiment is a good example of
of reduced dimensionality has been of great recent interesthe crossover region between the semiclassical and quantum
In particular, systems at very high magnetic fields, sys-  transport regimes has to do with the interplay of the mag-
tems at very low magnetic field have been studiednetic states—the classical cyclotron orbits—and the
extensivel)?. These represent distinct regimes: the latter iSquantum-mechanica| behavior enforced by the narrow con-
often treated via semiclassical ballistic trajectories, while thestrictions. In previous work the transport coefficients were
former is described via well-defined quantum mechanics ofodeled numerically, and the qualitative behavior of the ex-
Landau levels. The crossover region between these regimegiment was recovered. In addition, the decrease of the AB

has been difficult, due in large part to the difficulty in de- perinds was shown to be qualitatively explained by consid-
signing and perfqrmlng appropriate experimefénd corre- ering Feynman path integrals of states enclosing the dots,
sponding theoretical modelsvhich isolate the crossover re- which are constrained by hard walls at the channel efiges.

gime in a clear fashion. g . : i
A recent experimentdesigned to probe the crossover re_The path-integral approach gives rise to stationary states

gion has produced some interesting results; interpretation d'f’hi.Ch are gualitatively smaller than the classical cyclotron
the experiment has been difficult, and no clear picture hagroits for_ﬂelds b.e'OW resonance, because a vertical oval
emerged~’ The device of interest consists of a quantumshape which just fits th_e constrictions has_a_larger net curva-
wire of two-dimensional electron gas, with a pair of antidotsir® than a circle which fits the constrictions. The oval
situated side by side obstructing the char(sek Fig. 1L The  “9rows” with increasing field, until the cyclotron resonance,
most important features of this device are the two narrowvhich accounts for the decrease in the AB period just below
constrictions separating the channel edges from the antidotéésonance. However, this picture breaks down at resonance,
In the experimental setup, the wire width isian, while the ~ Where purely quantum effects account for the field-
dot diameters (lithographically are 0.2um. The two- independent AB period. Although a nearly constant AB pe-
terminal conductance of the device as a function of appliediod has been observed in other device geometries, the cur-
(perpendicular magnetic field is shown in Fig.(8); note rentdevice is most interesting to the crossover physics since
that the conductance shows a prominent dip, modulated bV‘e open channellallc_)ws t_he electron trajectories to be free to
Anharonov-Bohm oscillations, centered at a magnetic field’ary with magnetic field; in other devices, the constancy of
of roughly 0.2 . For the experimental parameters, the fieldthe AB period was associated with geometric constraints on
where the broad dip in conductance occurs corresponds to di€ €lectron trajectories, and the magnetic field simply pro-
electron cyclotron orbit which just fits the channel, enclosing¥ides a flux threading the fixed trajectorfealso, many in-

the two antidotdéshown schematically in Fig.)1The loss of ~ teresting colleqtlve e_ffects, not assouat(_ad.wnh the frge Cross-
conductance corresponds to the trapping of electrons in thidver from semiclassical to quantum ballistics, occur in arrays

cyclotron orbit. The Aharonov-BohnfAB) oscillations are

due to quantum interference associated with the multiply —

connected geometry, i.e., states transmitted through the con- y

strictions, and the trapped cyclotron states. Remarkably, the

period of the these AB oscillations is nearly independent of

field throughout the entire region of cyclotron resonance.

One would expect that since the area of the classical cyclo- X

tron orbit decreases as the applied field increases, that the

period of the AB oscillations might increase with increasing  FIG. 1. The device geometry considered in this paper. The solid
field. (Other unexpected features appear in this experimeriars depict the gates defining the channel, while the solid circles
which will not be treated in this Brief Report, but have beendepict the gates defining the antidots. The directed circular path is a
treated in detail elsewhefe) schematic of a cyclotron orbit encircling the antidots.
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2 - - abruptness with which the state occupying the Fermi energy
(@) changes with the magnetic field. This will be explained fur-
ther below.

The energy levels of the system evolve in a very compli-
cated fashion as a function of field, i.e., the energy levels
form an extraordinary web of level crossings. Therefore, the
state occupying the Fermi energy is constantly changing. The
web of level crossings is roughly analogous to the Darwin-
1 : : Fock states associated with the parabolically confiiuen-

0.02 -0.05095 tum dob potential under an applied transverse magnetic field.
In the Darwin-Fock case, the pattern of level crossings, and
the corresponding jagged energy surface corresponding to
the Fermi level, traces out a “devil’s staircase” fractal Iiffe.
States also pass through the Fermi level frequently as a func-

-0.051 tion of field in the current model; near the cyclotron orbit,

states of different morphology assume the Fermi level with a

nearly constant period, a phenomenon closely related to the

oscillations observed experimentally. The variation of the

Fermi energy with constant period near the cyclotron reso-

-0.05105 nance is independent of system size—it is therefore reason-

able to assume that it occurs as well for open systems and

does include the experimental results. As a result of the com-
plex interplay between the semiclassical cyclotron orbit state

FIG. 2. () The experimental two-terminal conductance of the and the fully quantum-mechanical effect of the narrow con-
two-antidot devicefrom Ref. 3. (b) The integrated probability of ~ strictions, we show that the conductance oscillations are not
the constriction regiofdleft axis) for the calculated eigenstate at the simple AB interference oscillations, but are also the result of
Fermi level, and the Fermi level ener@yght axig as functions of ~ states appearing at the Fermi energy which, as mentioned
magnetic field. above, are “pinched off” in the constrictions, and result in a
reflection of incident electrons. The transmission portion of

of antidots®-12 Other related experiments have been per_the oscillation is due to the semiclassical cyclotron resonant

formed on arrays of quantum dots, but at very low tempera-state. Of course, AB interference is occurring for these states,
tures, such thatperiodic in the B field oscillations arising @S Pointed out above, but it is the alternating appearance of
via quantized orbits in antidot arrays appear in addition td"€ Pinched-ofiireflection states and the cyclotron resonant

the classical geometric effects of orbits which encompasStates with a nearly fixed period in magnetic field which
fixed numbers of dots*14 However, the study of the inter- CcOntributes most to the conductance oscillations.
play of classical and quantum ballistics is much simpler in 1he model that we utilize is a tight-binding Hamiltonian
the geometry of the current paper; quantum-mechanical caP” a_squ_are_latt!ce, which is diagonalized numerically. The
culations for the potential landscape of the antidot arrays argl@miltonian is given by
too complex to distill the essential physics. However, the
B-periodic conductance in these systems has been studied viaH= >, a! anVmn—t(ah 1,amne"?+al am e "’
trapped classicalchaotio orbits® m.n

In this Brief Report, we study the stationary eigenstates of +al .a +al a ) 1)
the device geometry themselves, as a function of applied mn 1Emn T SmaEmns 17
magnetic field, to compare the spatial morphology of theThe various components of this Hamiltonian are as follows:
states near the Fermi energy as a function of magnetic fieldn andn are site labels in the andy directions, respectively
We will demonstrate that the system evolves from a mordsee Fig. 1 t is the hopping energy given b#2/2m* d?
homogeneous, “classical” wave function to a sharply de-(with d the lattice constapt 6=eBdf/% is the magnetic
fined cyclotron orbitlike wave function, which then alter- phase associated with hopping in thelirection (we utilize
nates at a roughly constant period with a low-conductinghe Landau gaugeA=[—By,0,0)], —e is the electron
state associated with a “pinch-off” of the narrow constric- charge, andn* is the electron effective mass. Als®,,, is
tion region between the antidots and the channel edges. Thibe potential energy of the site labeled and n, and the
approach—the study of the stationary states of a closedevice geometry is modeled via this term. We utilize the
model system—though not a transport model directly, nonestatic potential model from Ref. 4, in which the lateral gates
theless sheds light on the experimental results. Our picturand the antidots are assumed to have parabolic potentials
may be thought of as an antidot pair strongly coupled to twanear their sides, with a flat potential elsewhere. Specifically,
very short leads with no voltage bias applied. In fact, weV(r)=(Eg/a?)[r—a(l+s)]?> for r<a(l+s), and V(r)
have run simulations of various sized “leads,” and the over-=0 otherwise. Here is the distance from the gata,is a
all effects that we present in this paper are robust. The effectength scalgchosen to be 0.Q5), ands is a dimensionless
of the lead size may be broadly characterized as changing thgarameter which specifies the width of the depleted region
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surrounding the gates themselves. By tuning the pararaeter
the potential may be adjusted so that the system will transmit
the proper number of modes through the constricti@hsis

the Fermi energy for the two-dimensional systémeasured
from the bottom of the bandIn our model, the square grid
was 170 170 sites, so 170 sites span the $ample; there-
fore the lattice constani=0.00588:. Near the cyclotron
resonance the magnetic field is roughdy=0.23T, giving
about nine lattice sites per magnetic length.

In Fig. 2(a), we show the experimental two-terminal con-
ductance for the device depicted in Fig. 1 as a function of the
applied magnetic field. The conductance shows an overall
dip, centered at the value of magnetic field where the cyclo-
tron orbit of electrons in the two-dimensional gas “fit” be-
tween the channel boundaries and encircle the antidois
orbit is depicted schematically in Fig).1The dip is modu-
lated by oscillations with & nearly constant period. We note FIG. 3. Contour plots of the modulus-squared eigenstates corre-
that in the experiment, the potential applied to the gates des:pondiﬁg.to the labeled peaks in integrated probability from Fig
fining the anti-dots was tuned such that the constrictions be; e '

. ) . X éb). Note that the peaks correspond to cyclotron-orbit-like states.
tween the antidots and the side gates admit one quantize

transverse mode. For the calculations, we set the antidot 9aj e is significantly influenced by the complex interplay of
parameters=2.05, such that the system admits a singleihe magnetic field dynamics and the quantization required by
transverse mode through the constrictidigéamiltonian(1)  the constrictions.

above was solved previously via different methods to estab- To jllustrate this interplay, Figs.(8—3(d) show contour

lish the transport coefficients—see Ref. #he constrictions  plots of the modulus-squared eigenstates of the system for
between the antidots is pinched off. In FigbR we show the peaks labeled—d in Fig. 2b). For clarity, we have
both the integrated probability in the constrictions and thechosen a very coarse contour plot utilizing only five con-
Fermi level as functions of the applied magnetic field. Thetours, and thus the most important features show clearly.
integrated probability is the sum of the modulus-squaredNote that the states associated with pebkand c clearly
eigenstates| |2, over the sitesn and m that lie in the show the cyclotron resonance, and so the cyclotron reso-
constrictions between the antidots and the side gates. TH&nces are associated with a peak in conductance. &eak
eigenstate used in the calculation is the Fermi lefex-  Where the field is lower than the cyclotron field, is associated
plained below. The integrated probability calculation gives a With a state resembling a “vertical oval.” The oval sketched
very rough approximation of the behavior of the device con-On the figure corresponds to the stationary Feynman state at
ductance, since according to the two-terminal LandSuer the appropriate magnetic field. Recall t_hat the plot has only
formula the conductance is proportional to the transmissiofiVe contours, and thus the most prominent features are re-

probability at the Fermi energy, and thus to the net probab"jlected; in the full eigenstate, the prominent peaks that lie on

ity to connect one side of a constriction to the other. Thethe oval state sketched in the figure are connected by smaller

Fermi level is calculated by diagonalizing Hamiltonidh at fe_atures. Statd, on the othe_r hand, is associated with a 1,‘|eld
o higher than the cyclotron field, and shows the system’s at-
a zero magnetic field, and the number of states between tf}e

. . empt to accommodate a cyclotron orbit with a radius less
b°“°'.“ of the band ar_ld the Fermi energy 1S .calculated. h an that which would “fit” into the constrictions. Note that
Fermi level as a function of the applied field is then trackedLh

b . h b ¢ ¢ he b e eigenstate is beginning to fill in the region around the
y counting the same number of states from the bottom okt as the cyclotron orbit radius shrinks. It is important

the band at each magnetic field. The erratic traces of thg, rejterate that the system is changing from one eigenstate to
Fermi level are the result of the many level crossings thalother as the field is increased, and that statasare not
occur as a function of magnetic field. the same eigenstate.

Several interesting features appear in Fig)2We note Figure 4 illustrates the other types of eigenstates that ap-
that the Fermi level shows a series of smooth transitions Negdfear. In(b) and (c), the states associated with the dramatic
the cyclotron resonancevhich occurs at roughly 0.225,  dips in integrated probability @#=0.2184T and 0.2277,
with eigenstates being pushed through the Fermi energy atr@spectively, are shown. Note that the constrictions have
nearly constant periodmatching the period seen in the ex- been nearly pinched off for these states, corresponding to a
perimental conductance trateAt the same time, significant conductance minimum; the oscillations in the conductance
spikes and dips appear in the integrated probability througlare associated with the alternating cyclotron-orbit-like states
the constrictions, also with the correct period. The combina{relative maxima in conductancwith the near pinch-off of
tion of results—one from the overall magnetic dynamics andhe constrictiongrelative conductance minimaalso occur-
one from the role of the constrictions—indicates that thering for states near the cyclotron resonance. The pinch-off is
modulation of the conductance dip near the cyclotron resoelearly an effect of states available in the constrictions at the
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8ot o |t op0n- oeo 52 o8 single-mode conductance o&2h from the transport calcu-
G e B W :;i'fég;, < ,°(b)°. S st lation, which, noting the relative “connectedness” of the two
;5".‘;""‘"9 (a) vﬂ}';ﬁ%ﬁ-&%@ :."'-.' ends of the system via the eigenstate, lends plausibility to the
oty 'mu.'. 3::} Al Y0 T g0, 7%0z; ¢4 argument for the integrated probability/conductance connec-
mj{}é&. .W ';g RS . %,’ tion. In stated, the eigenstate &= 0.3836 is shown; this
o«j:g" 'gi'v.g ,‘,,{@fw w&&g,‘, field is well above the conductance minimum, where the sys-
P 4 eIt S tem has returned to the single-transmitted-mode regime. The
Seso'el "o @ae, .-".""‘30"' Py H
g o Y g_g' 4 Bl ‘:,3 state again shows that the two sample ends are well con-
R AR L A ® vt % nected. Also, state begins to depict the coming edge-state
. . o . regime at higher fields, where the states are distributed in
o ;g.:"’j'o. RN §§g= e 3.;.«*"4“‘”' ‘“"'«%o N narrow regions near the sample boundaries and around the
e (e o™ (d) ™ antidots.
g SRR ot‘fw.’e,‘“é%;;,.,ﬁ':, o o i 8o In summary, we have calculated the eigenstates of the
3296'5;; .. _3%:3'2.»‘:{% s S diRP, A S two-antidot system via a numerical diagonalization of a
58 oy g s o €% x| model potential, using standard techniques. The calculations
%vg“;;‘j' °;§.,§'ﬁ o5 A shed light on the roles of the classical trajectories and the
'a.;?%"‘ ' ° .é’ 3| {'5» og;i' guantized motion of electrons through the narrow constric-
PP 00, . 90, SO 0 emagegeentt T | tions separating the antidots from the channel edges. We find

that the conductance oscillations are due to the modulation of
FIG. 4. () The modulus-squared eigenstate at zero magnetiéh€ state at the Fermi level with magnetic field, and that the
field. This state corresponds to the single-mode conductance tunégorphology of the state occupying the Fermi level alternates
at zero applied field(b) and (c) The states corresponding to the Smoothly between a conducting, cyclotron-orbit-like state
minima in integrated probability #=0.2184 and B=0.2277, and a nonconducting state with no appreciable contribution
respectively.(d) The state atB=0.3836, showing a return to from the constriction. The modulation takes place at the
single-mode transmission. same period as the experimental conductance oscillations,
and is due to the complex level crossings associated with the

Fermi level, and is not associated directly with the semiclasSimply-connected geometry.
sical magnetic dynamics. It should be stressed that, due to
fche coarse contour plot, it a_\rt_ificially_appears thalf® is zero ACKNOWLEDGMENTS
in the constrictions, when it in fact is just very small.
For completeness, in Fig(@ we show the eigensate at  This work was supported by an award from Research Cor-
zero magnetic field; note that this picture corresponds to thporation.
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