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Numerical eigenstates for a two-antidot channel under a magnetic field
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~Received 14 March 2002; published 17 October 2002!

We have calculated the single-particle eigenstates of a system designed to model a two-dimensional channel
obstructed by a pair of anti-dots, under a transverse magnetic field. The model is relevant to recent experiments
in which the conductance of the two-antidot system reveals a conductance minimum which is modulated by
oscillations of aconstant period in a magnetic field, contrary to the predictions of semiclassical calculations.
We show that the modulations are due to the evolution with applied magnetic field of the eigenstates occupying
the Fermi level, which alternate between cyclotron resonant states and states which are pinched off in the
constricted region between the antidots and the channel edge. The phenomenon is an example of the interplay
of the semiclassical cyclotron behavior and the quantum-mechanical nature of the constrictions.
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The study of electron transport in semiconductor devi
of reduced dimensionality has been of great recent inter
In particular, systems at very high magnetic fields,1 or sys-
tems at very low magnetic field have been stud
extensively.2 These represent distinct regimes: the latter
often treated via semiclassical ballistic trajectories, while
former is described via well-defined quantum mechanics
Landau levels. The crossover region between these reg
has been difficult, due in large part to the difficulty in d
signing and performing appropriate experiments~and corre-
sponding theoretical models! which isolate the crossover re
gime in a clear fashion.

A recent experiment3 designed to probe the crossover r
gion has produced some interesting results; interpretatio
the experiment has been difficult, and no clear picture
emerged.4–7 The device of interest consists of a quantu
wire of two-dimensional electron gas, with a pair of antido
situated side by side obstructing the channel~see Fig. 1!. The
most important features of this device are the two narr
constrictions separating the channel edges from the antid
In the experimental setup, the wire width is 2mm, while the
dot diameters ~lithographically! are 0.2mm. The two-
terminal conductance of the device as a function of app
~perpendicular! magnetic field is shown in Fig. 2~a!; note
that the conductance shows a prominent dip, modulated
Anharonov-Bohm oscillations, centered at a magnetic fi
of roughly 0.23T. For the experimental parameters, the fie
where the broad dip in conductance occurs corresponds t
electron cyclotron orbit which just fits the channel, enclos
the two antidots~shown schematically in Fig. 1!. The loss of
conductance corresponds to the trapping of electrons in
cyclotron orbit. The Aharonov-Bohm~AB! oscillations are
due to quantum interference associated with the mult
connected geometry, i.e., states transmitted through the
strictions, and the trapped cyclotron states. Remarkably,
period of the these AB oscillations is nearly independen
field throughout the entire region of cyclotron resonan
One would expect that since the area of the classical cy
tron orbit decreases as the applied field increases, tha
period of the AB oscillations might increase with increasi
field. ~Other unexpected features appear in this experim
which will not be treated in this Brief Report, but have be
treated in detail elsewhere.4,5!
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The reason the antidot experiment is a good example
the crossover region between the semiclassical and quan
transport regimes has to do with the interplay of the m
netic states—the classical cyclotron orbits—and
quantum-mechanical behavior enforced by the narrow c
strictions. In previous work,4 the transport coefficients wer
modeled numerically, and the qualitative behavior of the
periment was recovered. In addition, the decrease of the
periods was shown to be qualitatively explained by cons
ering Feynman path integrals of states enclosing the d
which are constrained by hard walls at the channel edg4

The path-integral approach gives rise to stationary sta
which are qualitatively smaller than the classical cyclotr
orbits for fields below resonance, because a vertical o
shape which just fits the constrictions has a larger net cu
ture than a circle which fits the constrictions. The ov
‘‘grows’’ with increasing field, until the cyclotron resonanc
which accounts for the decrease in the AB period just be
resonance. However, this picture breaks down at resona
where purely quantum effects account for the fie
independent AB period. Although a nearly constant AB p
riod has been observed in other device geometries, the
rent device is most interesting to the crossover physics s
the open channel allows the electron trajectories to be fre
vary with magnetic field; in other devices, the constancy
the AB period was associated with geometric constraints
the electron trajectories, and the magnetic field simply p
vides a flux threading the fixed trajectories.8 Also, many in-
teresting collective effects, not associated with the free cro
over from semiclassical to quantum ballistics, occur in arra

FIG. 1. The device geometry considered in this paper. The s
bars depict the gates defining the channel, while the solid cir
depict the gates defining the antidots. The directed circular path
schematic of a cyclotron orbit encircling the antidots.
©2002 The American Physical Society11-1



er
ra

t
as
-
in

ca
a

th
d

o
lie
th
e
or
e
r-
in
c-
T
se
ne
tu
w
we
er
ec

t

rgy
r-

li-
els
the
The
in-

ld.
and
g to

unc-
it,
h a
the

he
so-
son-
and
om-
ate
n-
not

t of
ned
a
of
ant
tes,
e of
nt
ch

n
he

s:

he
tes
tials
lly,

ion

he

e

BRIEF REPORTS PHYSICAL REVIEW B66, 153311 ~2002!
of antidots.9–12 Other related experiments have been p
formed on arrays of quantum dots, but at very low tempe
tures, such that~periodic in the B field! oscillations arising
via quantized orbits in antidot arrays appear in addition
the classical geometric effects of orbits which encomp
fixed numbers of dots.13,14 However, the study of the inter
play of classical and quantum ballistics is much simpler
the geometry of the current paper; quantum-mechanical
culations for the potential landscape of the antidot arrays
too complex to distill the essential physics. However,
B-periodic conductance in these systems has been studie
trapped classical~chaotic! orbits.13

In this Brief Report, we study the stationary eigenstates
the device geometry themselves, as a function of app
magnetic field, to compare the spatial morphology of
states near the Fermi energy as a function of magnetic fi
We will demonstrate that the system evolves from a m
homogeneous, ‘‘classical’’ wave function to a sharply d
fined cyclotron orbitlike wave function, which then alte
nates at a roughly constant period with a low-conduct
state associated with a ‘‘pinch-off’’ of the narrow constri
tion region between the antidots and the channel edges.
approach—the study of the stationary states of a clo
model system—though not a transport model directly, no
theless sheds light on the experimental results. Our pic
may be thought of as an antidot pair strongly coupled to t
very short leads with no voltage bias applied. In fact,
have run simulations of various sized ‘‘leads,’’ and the ov
all effects that we present in this paper are robust. The eff
of the lead size may be broadly characterized as changing

FIG. 2. ~a! The experimental two-terminal conductance of t
two-antidot device~from Ref. 3!. ~b! The integrated probability of
the constriction region~left axis! for the calculated eigenstate at th
Fermi level, and the Fermi level energy~right axis! as functions of
magnetic field.
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abruptness with which the state occupying the Fermi ene
changes with the magnetic field. This will be explained fu
ther below.

The energy levels of the system evolve in a very comp
cated fashion as a function of field, i.e., the energy lev
form an extraordinary web of level crossings. Therefore,
state occupying the Fermi energy is constantly changing.
web of level crossings is roughly analogous to the Darw
Fock states associated with the parabolically confined~quan-
tum dot! potential under an applied transverse magnetic fie
In the Darwin-Fock case, the pattern of level crossings,
the corresponding jagged energy surface correspondin
the Fermi level, traces out a ‘‘devil’s staircase’’ fractal line.16

States also pass through the Fermi level frequently as a f
tion of field in the current model; near the cyclotron orb
states of different morphology assume the Fermi level wit
nearly constant period, a phenomenon closely related to
oscillations observed experimentally. The variation of t
Fermi energy with constant period near the cyclotron re
nance is independent of system size—it is therefore rea
able to assume that it occurs as well for open systems
does include the experimental results. As a result of the c
plex interplay between the semiclassical cyclotron orbit st
and the fully quantum-mechanical effect of the narrow co
strictions, we show that the conductance oscillations are
simple AB interference oscillations, but are also the resul
states appearing at the Fermi energy which, as mentio
above, are ‘‘pinched off’’ in the constrictions, and result in
reflection of incident electrons. The transmission portion
the oscillation is due to the semiclassical cyclotron reson
state. Of course, AB interference is occurring for these sta
as pointed out above, but it is the alternating appearanc
the pinched-off~reflection! states and the cyclotron resona
states with a nearly fixed period in magnetic field whi
contributes most to the conductance oscillations.

The model that we utilize is a tight-binding Hamiltonia
on a square lattice, which is diagonalized numerically. T
Hamiltonian is given by

H5(
m,n

amn
† amnVmn2t~am11n

† amne
inu1amn

† am11ne2 inu

1amn11
† amn1amn

† amn11!. ~1!

The various components of this Hamiltonian are as follow
m andn are site labels in thex andy directions, respectively
~see Fig. 1!, t is the hopping energy given by\2/2m* d2

~with d the lattice constant!, u5eBd2/\ is the magnetic
phase associated with hopping in thex direction ~we utilize
the Landau gauge,A5@2By,0,0)], 2e is the electron
charge, andm* is the electron effective mass. Also,Vmn is
the potential energy of the site labeledm and n, and the
device geometry is modeled via this term. We utilize t
static potential model from Ref. 4, in which the lateral ga
and the antidots are assumed to have parabolic poten
near their sides, with a flat potential elsewhere. Specifica
V(r )5(EF /a2)@r 2a(11s)#2 for r ,a(11s), and V(r )
50 otherwise. Herer is the distance from the gate,a is a
length scale~chosen to be 0.05m), ands is a dimensionless
parameter which specifies the width of the depleted reg
1-2
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surrounding the gates themselves. By tuning the paramets,
the potential may be adjusted so that the system will trans
the proper number of modes through the constrictions.EF is
the Fermi energy for the two-dimensional system~measured
from the bottom of the band!. In our model, the square gri
was 1703170 sites, so 170 sites span the 1m sample; there-
fore the lattice constantd50.00588m. Near the cyclotron
resonance the magnetic field is roughlyB50.23T, giving
about nine lattice sites per magnetic length.

In Fig. 2~a!, we show the experimental two-terminal co
ductance for the device depicted in Fig. 1 as a function of
applied magnetic field.3 The conductance shows an over
dip, centered at the value of magnetic field where the cyc
tron orbit of electrons in the two-dimensional gas ‘‘fit’’ be
tween the channel boundaries and encircle the antidots~this
orbit is depicted schematically in Fig. 1!. The dip is modu-
lated by oscillations with a nearly constant period. We n
that in the experiment, the potential applied to the gates
fining the anti-dots was tuned such that the constrictions
tween the antidots and the side gates admit one quan
transverse mode. For the calculations, we set the antidot
parameters52.05, such that the system admits a sin
transverse mode through the constrictions.@Hamiltonian~1!
above was solved previously via different methods to es
lish the transport coefficients—see Ref. 4#. The constrictions
between the antidots is pinched off. In Fig. 2~b!, we show
both the integrated probability in the constrictions and
Fermi level as functions of the applied magnetic field. T
integrated probability is the sum of the modulus-squa
eigenstates,ucnmu2, over the sitesn and m that lie in the
constrictions between the antidots and the side gates.
eigenstate used in the calculation is the Fermi level~ex-
plained below!. The integrated probability calculation gives
very rough approximation of the behavior of the device co
ductance, since according to the two-terminal Landau15

formula the conductance is proportional to the transmiss
probability at the Fermi energy, and thus to the net proba
ity to connect one side of a constriction to the other. T
Fermi level is calculated by diagonalizing Hamiltonian~1! at
a zero magnetic field, and the number of states between
bottom of the band and the Fermi energy is calculated.
Fermi level as a function of the applied field is then track
by counting the same number of states from the bottom
the band at each magnetic field. The erratic traces of
Fermi level are the result of the many level crossings t
occur as a function of magnetic field.

Several interesting features appear in Fig. 2~b!. We note
that the Fermi level shows a series of smooth transitions n
the cyclotron resonance~which occurs at roughly 0.225T),
with eigenstates being pushed through the Fermi energy
nearly constant period, matching the period seen in the e
perimental conductance trace.17 At the same time, significan
spikes and dips appear in the integrated probability thro
the constrictions, also with the correct period. The combi
tion of results—one from the overall magnetic dynamics a
one from the role of the constrictions—indicates that
modulation of the conductance dip near the cyclotron re
15331
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nance is significantly influenced by the complex interplay
the magnetic field dynamics and the quantization required
the constrictions.

To illustrate this interplay, Figs. 3~a!–3~d! show contour
plots of the modulus-squared eigenstates of the system
the peaks labeleda–d in Fig. 2~b!. For clarity, we have
chosen a very coarse contour plot utilizing only five co
tours, and thus the most important features show clea
Note that the states associated with peaksb and c clearly
show the cyclotron resonance, and so the cyclotron re
nances are associated with a peak in conductance. Pea,
where the field is lower than the cyclotron field, is associa
with a state resembling a ‘‘vertical oval.’’ The oval sketche
on the figure corresponds to the stationary Feynman sta
the appropriate magnetic field. Recall that the plot has o
five contours, and thus the most prominent features are
flected; in the full eigenstate, the prominent peaks that lie
the oval state sketched in the figure are connected by sm
features. Stated, on the other hand, is associated with a fie
higher than the cyclotron field, and shows the system’s
tempt to accommodate a cyclotron orbit with a radius le
than that which would ‘‘fit’’ into the constrictions. Note tha
the eigenstate is beginning to fill in the region around
antidots as the cyclotron orbit radius shrinks. It is importa
to reiterate that the system is changing from one eigensta
another as the field is increased, and that statesa–d are not
the same eigenstate.

Figure 4 illustrates the other types of eigenstates that
pear. In~b! and ~c!, the states associated with the drama
dips in integrated probability atB50.2184T and 0.2272T,
respectively, are shown. Note that the constrictions h
been nearly pinched off for these states, corresponding
conductance minimum; the oscillations in the conducta
are associated with the alternating cyclotron-orbit-like sta
~relative maxima in conductance! with the near pinch-off of
the constrictions~relative conductance minima!, also occur-
ring for states near the cyclotron resonance. The pinch-o
clearly an effect of states available in the constrictions at

FIG. 3. Contour plots of the modulus-squared eigenstates co
sponding to the labeled peaks in integrated probability from F
2~b!. Note that the peaks correspond to cyclotron-orbit-like stat
1-3
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Fermi level, and is not associated directly with the semicl
sical magnetic dynamics. It should be stressed that, du
the coarse contour plot, it artificially appears thatucu2 is zero
in the constrictions, when it in fact is just very small.

For completeness, in Fig. 4~a! we show the eigensate a
zero magnetic field; note that this picture corresponds to

FIG. 4. ~a! The modulus-squared eigenstate at zero magn
field. This state corresponds to the single-mode conductance t
at zero applied field.~b! and ~c! The states corresponding to th
minima in integrated probability atB50.2184T and B50.2272T,
respectively.~d! The state atB50.3836T, showing a return to
single-mode transmission.
ro

i

e
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k
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single-mode conductance of 2e2/h from the transport calcu-
lation, which, noting the relative ‘‘connectedness’’ of the tw
ends of the system via the eigenstate, lends plausibility to
argument for the integrated probability/conductance conn
tion. In stated, the eigenstate atB50.3836T is shown; this
field is well above the conductance minimum, where the s
tem has returned to the single-transmitted-mode regime.
state again shows that the two sample ends are well c
nected. Also, stated begins to depict the coming edge-sta
regime at higher fields, where the states are distributed
narrow regions near the sample boundaries and around
antidots.

In summary, we have calculated the eigenstates of
two-antidot system via a numerical diagonalization of
model potential, using standard techniques. The calculat
shed light on the roles of the classical trajectories and
quantized motion of electrons through the narrow const
tions separating the antidots from the channel edges. We
that the conductance oscillations are due to the modulatio
the state at the Fermi level with magnetic field, and that
morphology of the state occupying the Fermi level alterna
smoothly between a conducting, cyclotron-orbit-like sta
and a nonconducting state with no appreciable contribu
from the constriction. The modulation takes place at
same period as the experimental conductance oscillati
and is due to the complex level crossings associated with
simply-connected geometry.
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