Least Squares - Orthogonal Diagonalization - Spectral Decomposition - Singular Value Decomposition

1. Given,

$$
\mathbf{A}=\left[\begin{array}{rr}
2 & 4 \\
-5 & -1 \\
1 & 2
\end{array}\right]
$$

Determine an orthonormal basis for the column space of \mathbf{A}.
2. Given the linear system of equations,

$$
\begin{aligned}
& x_{1}+x_{2}=2 \\
& x_{1}+x_{2}=4
\end{aligned}
$$

(a) Determine the least-squares solution to the linear system.
(b) Determine the least-squares error associated with the linear system.
(c) Graph the linear system, the least-squares solution, and the least-squares error in \mathbb{R}^{2}.
3. Given,

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 3 \\
2 & 4 \\
1 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
7 \\
3 \\
1
\end{array}\right]
$$

(a) Show that the columns of \mathbf{A} are linearly independent.
(b) Determine the $\mathbf{Q R}$ factorization of \mathbf{A}.
(c) Using this factorization calculate the unique least-squares solution $\hat{\mathbf{x}}=\mathbf{R}^{-1} \mathbf{Q}^{\mathrm{T}} \mathbf{b}$. ${ }^{1}$
4. Recall the Pauli Spin Matrix from a previous homework,

$$
\sigma_{2}=\sigma_{y}=\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]
$$

(a) Show that σ_{y} is self-adjoint. ${ }^{2}$
(b) Find the orthogonal diagonalization of $\sigma_{y} \cdot{ }^{3}$
(c) Show that $\sigma_{y}=\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}+\lambda_{2} \mathbf{x}_{2} \mathbf{x}_{2}^{\mathrm{H}}$, where \mathbf{x}_{1} and \mathbf{x}_{2} are the normalized eigenvectors from part (b). ${ }^{4}$
5. Given,

$$
\mathbf{A}=\left[\begin{array}{ll}
7 & 1 \\
0 & 0 \\
5 & 5
\end{array}\right]
$$

Find a singular value decomposition of \mathbf{A}.

[^0]
[^0]: ${ }^{1}$ See theorem 6.5 .15 on page 414.
 ${ }^{2}$ If a matrix is equal to its transpose then we say that the matrix is symmetric. If the matrix has complex numbers then we have a more general definition. For $\mathbf{A} \in \mathbb{C}^{n \times n}$ we say that \mathbf{A} is self-adjoint if $\mathbf{A}^{\mathrm{H}}=\overline{\mathbf{A}}^{\mathrm{T}}=\mathbf{A}$. That is, a matrix is self-adjoint if it is equal to its own complex-conjugate transpose. Self-adjoint matrices are the analouge of symmetric matrices for the complex number field. Also, notice that this definition recovers the definition of symmetric if the matrix has only real entries.
 ${ }^{3}$ You should find eigenvectors with complex entries. If you use the standard definition of inner-product then you will get zero length, which is sensible since part of the direction of these vectors is into the complex number system. However, this will lead you to a division by zero when trying to normalize the eigenvector. In the case where vectors have complex entries the inner-product is generalised to $\mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{\mathrm{H}} \mathbf{y}=\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{y}$. Notice, again that the standard definition of inner-product is recovered when the vectors are real.
 ${ }^{4}$ This is called the spectral decomposition of a self-adjoint matrix. It is interesting to note that $\mathbf{x}_{i}^{\mathrm{H}} \mathbf{x}_{i}=1$, which implies that the 'matrix' has the same structure as the unitary matrices of chapter 6 . Since, $\mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{H}}$ is not the identity matrix we have that $\mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{H}}$ has the same structure as unitary matrices from problem 3 in homework 8. Consequently, we conclude that the self-adjoint matrix has been decomposed into projection matrices, which project an arbitrary vector into eigen-subspaces of the original matrix.

