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5.3 Interference by Division of Wavefront

The wavefront refers to the maxima (or other planes of constant phase) as
they propagate. The wavefront is normal to the direction of propagation. One
way of bringing about interference is by dividing the wavefronts into two or
more segments and recombining the segments elsewhere.

5.3.1 Double-Slit Interference

Suppose a monochromatic plone wave {a collimated beam, or a beam with
plane wavefronts} is incident on the opaque screen shown in Fig.5.3. Two
infinitesimal slits a distance d apart have been cut into the sereen. Each slit
behaves as a point source, radiating in all directions. We set up an observing
screen a great distance I away from the slits. Light from both slits falls on
this screen. The electric field at a point P is the sum of the fields originating
from each slit

B A(efik'rj _.__efikrz)éiwt , (534}

where A is the amplitude of the waves at the viewing screen and ry, r; are the
respective distances of the slits from P. Because the factor et is common
to all terms and will vanish from the interisity, we shall hereafter drop it.

If L is sufficiently large, 71 and 72 are effectively parallel and differ only
by dsin#. Thus



108 5. 'Wave Optics

Fig. 5.3. Double-slit in-
P terference
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E = Ae—ik?‘1(1 +e—ikdsin9) . (535)

The phase difference between the two waves is
¢ = kdsin @ , {5.36)

and we can immediately write

Ia.}(cos%%dsinﬁ) {5.37)

from the earlier treatment of superposition. dsin@ is called the optical path
difference (OF D) between the two waves. For small angles, sin 8 = x/L, and
the interference pattern has a cos? variation with . Maxima occur whenever
the argument of the cosine is an integral multiple of 7, or where

OPD = mA (constructive interference) . (5.38a)

This result is generally true and comes about because the waves have a
relative phase equal to a multiple of 27 whenever the optical path difference
between them is an integral multiple of the wavelength.

Simitarly, minima (in this case, zeros) occur whenever

OPD = (m+ 1/2)A (destructive interference). (5.38b)

When this relation holds, the waves arrive at the observing screen exactly
180° out of phase. If the waves have equal amplitudes they cancel each other
precisely.

In fact, the cos? fringes do not extend infinitely far from the axis. This
is so for at least two reasons: {a) the light is not purely monochromatic, and
(b) the slits are not infinitesimal in width.

The first relates to the coherence of the light, Wthh we shall diseuss
later. This effect brings about a superposition of many double-slit patterns,
one for each wavelength, so to speak. Each wavelength brings about slightly
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Fig. 5.4. (a) Superpaosition of two incoherent, double-slit interference patterns.
{b) Double-slit pattern with light that is not monochromatic. (¢} Double-slit pat-
tern with finite slits

different fringe pattern from the rest, and at large angles 8 the patterns do
not coincide exactly {Fig. 5.4a). This results in the washing out and eventual
disappearance of the fringes, as shown in Fig. 5.4b.

The second effect has to do with diffraction, which we also discuss later.
In the derivation, we agsumed each slit to radiate uniformly in all directions.
This assumption is valid only for zero slit width. A finite slit radiates pri-
marily into a cone whose axis is the direction of the ineident light. For this
reason, the intensity of the pattern falls nearly to 0 for large 8. With a good,
monochromatic source, this is usually the important effect and is shown in
Fig. 5.4c.

5.3.2 Multiple-Slit Interference

If we generalize from two slits to many (Fig.5.5), we find that the OPD
between rays coming from adjacent slits is dsin#. Thus, the OPD between
the first and the jth slit is (j — 1)d sin#. The total electric field at a point on
the distant observation screen is a sum not of two terms, but of many,

Fig. 5.5. Multiple-slit interferometer
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E=Ade #*{l +e % o720 L g73¢ 4 .4 o~ (N=Dig] (5.39)

where N is the number of slits and ¢ = kdsin # as before.

The term in brackets is a geometric series whose common ratio is e %%,
The sum of the terms in the series may be found by a well-known formula to
be '

. 1 — e"iNe

series sum = ———- . {5.40)

We use the same technique as before: factor e~ ¥¢/2 from the numerator
and e~**/2 from the denominator, and rewrite the sum as

—HN—1)e/2 sin ch)/2

series sum = e TGl (5.41)
Thus, the intensity of the interference pattern is
20w :
16) = A 2sm Nq5/2 2511‘1 gANdblnB) (5.42)
sin® ¢ /2 sin®(Zdsin8)

At certain values of #, the denominator vanishes. Fortunately, the numer-
ator vanishes at (among others) the same values of . The indeterminate form
0/0 must be evaluated by studying the limit of 7(#) as ¢ approaches ome of
these values. The evaluation is particularly simple as ¢ approaches 0, where
the sine is replaced by its argument. Thus,

lim 1(6) = AN? (5.43)

The denominator is 0 at other values of 8, and intuition shows that I(8)
approaches NV2A2? in those cases as well.

If N is a fairly large number, 7(#) is large at these angles. Conservation
of energy requires that 7(8) be relatively small at all other angles, and direct
calculation will bear this out.

A typical interference pattern: is sketched in Fig. 5.6. The sharp peaks are
known as principel mazimae and appear only when

w =
denb’:mﬂ'; m=10,%x1,=x2 ..., ) (5.44)
or when
[mA = dsing .= J& | , (5.45)

This is known as the grating equation, and m is known as the order number
or order. .

The smaller peaks are called secondary mazxima and appear because of
the oscillatory nature of the numerator of 1(#). When N 3 1, the secondary
maxima are relatively insignificant, and the intensity appears to be 0 at all
angles where the grating equation is not satisfied. At all angles that satisfy
the grating equation, the intensity is N2A42; it falls rapidly to 0 at other
angles.
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5.5.1 Single-Slit Diffraction

This is shown in one dimension in Fig. 5.12. We appeal to Huygens’s construe-
tion and assume that each element ds of the slit radiates a spherical wavelet.
The observing screen is located a distance L away from the aperture, and we
seek the intensity of the light diffracted at angle 8 to the axis.

The center O of the aperture is located a distance r from the observation
point P. The optical path difference between the paths from 6 and from the
element ds (at s) is ssin @, in the Fraunhofer approximation.

The electric field at P arising from the element is

e-—ik(r-!—s sin &)

dE = Afds ; (5.55)
Here, A is the amplitude of the incident wave, assumed constant across the
aperture. We obtain the r in the denominator by realizing that the element
is essentially a point source. The intensity from the point source obeys the
inverse-square law, so the amplitude falls off as 1/r. We drop ssiné from the
denominator because it is small compared with r. We cannot, however, drop
it from the phase term k{r +ssin @) because very small changes of ssin § cause
pronounced changes of the phase of the wavelet relative to that of another
wavelet.

The total field at P is the sum of the fields due to individual elements. If
the width of the slit is & and its center, s = 0, this sum is just the integral

o ikr b/2 o

E@)y=A f e Gksin®lsqq (5.56)
r —b/2

where constant terms have been removed from the integral. The integrand is

of the form exp(as), so the integral is easily evaluated:

e~ %" 25in{(kbsin #)/2]

L) = iksin @

(5.57)

bz B

b2 Fig. 5.12. Fraunhofer
diffraction by a single
opening
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If we multiply both numerator and denominator by 4, and define

1
8= §kbsin8, (5.58)
we may write
Ab . sin 3
E(6y = ikr
(&) p ( 3 ) ‘ (5.59a)

or

» 2 v
(6) ec% ( S‘;ﬁ ) : (5.50D)
More proper analysis, based on electromagnetic theory and a two-dimensio-
nal integration would include an additional factor of i/A in the expression
(5.59a) for E(6).

In addition, rigorous theory predicts another factor called the obliguity
factor whose functional form has been the subject of debate. The correct
form is most likely cosf, though the function (1 + cosf)/2 has also been
propesed. Both forms depend on the assumption that the plane wave remains
planar in spite of possible distortion of the electric field inside the aperture.
The obliquity factor is 0 in the reverse direction and explains why Huygens
wavelets do not propagate backward. Otherwise, it is generally unimportant,
but may have to be considered in studies of optical fibers that have small cores
and therefore high numerical apertures (see Sect. 11.7). For our purposes,
only the variable {sinf}/3 is important, since we will generally be interested
in relative intensities only.

Figure 5.13 shows I{#) vs @ for a single slit, normalized to . The prin-
cipal maxzimurn occurs when € approaches 0, and (sin3)/8 becomes 1. The
diffracted intensity is 0 at angles (except 0) for which sin/g = 0. The first
such zero occurs at angle

where 8 is assun;ed small.

1 T T
g £
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0 /b 23/b Fig. B.13. Single-slit diffraction
pattern .
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If the viewing screen is the focal plane of a lens, then the first minimum
is located a distance

RL =Xf'/b (5.61)

from the center of the pattern, which extends in the direction perpendicular
to the edges of the aperture. Over 80% of the diffracted light falls within
2AF' /b of the center of the pattern, and the first secondery maximum is only
about 5% as intense as the principal maximum.

Similar analysis can be carried out with a circular aperture in two dimen-
sions. The result is similar, except that the pattern is a disk, known as the
Airy disk, with radius defined by the first zero as

RL = 1.22Af'/D , (5.62)

where 7 is the diameter of the aperture. It is the finite size of the Airy disk
that limits the theoretical resolving power of any optical system.
Ezample 5.2. Calculate the Fraunhofer-diffraction pattern of a slit whose center is
located a distance sp away from the axis of the systemn. Show that the result is iden-
tical with (5.59a) multiplied by a complex-exponential function, exp{—ikspsing).
Show further that the intensity is identical with (5.59b) and is centered about the
angle 8 = 0.

This result applies only to Fraunhofer diffraction and therefore presumes that
g0 < L,r. The argument kgpsiné of the complex exponential function is a phase
factor that results from the shift of the aperture.

5.5.2 Interference by Finite Slits

Earlier, we noted that division-of-wavefront interference occurs because light
is diffracted by the individual apertures. This implies, for example, that the
interference pattern will vanish in those directions in which the diffracted
intensity is 0. Similarly, the pattern will be strongest in those directions where
the diffracted intensity is greatest. If the slits are identical, this implies that
the diffraction pattern with finite slits should be given by

[ (interference pattern) x (diffraction pattern of single slit) ,i (5.63)

T
where “interference pattern” refers to the pattern derived with infinitesimal
slits. It is possible to verify this relation by direct integration over an aperture
consisting of several finite slits.

The significance is mainly for multiple-slit interference. As we shall see in
Chap. 6, a diffraction grating may well have slits whose widths are about equal
to their spacing. Figure 5.14 shows the diffraction pattern in such a case. The
dashed line is the diffraction pattern of a single slit, and the various orders
of interference are indicated as peaks. Zero-order diffraction is of no interest,
but the first and higher orders are weak because very little light is diffracted
into their directions. Occasionally a principal maximum will fall so close to
the diffraction minimum that it is barely detectable. In this case we speak of
a missing order.
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= Fig. 5.14. Multiple-slit interfer-
ence with finite slits

1(6)




