Reading: Today: II. 1 Tomorrow: 112

Title: Jul 27-5:41 PM (2 of 8)

Spherical Coordinates
A function that's very common to use in sherical problems are
spherical harmonies.
$Y_{\text {em }}(\theta, \phi)$ is complete in θ, ϕ.
That means that any function com be written as

$$
f(\theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{\lambda} Y_{e m}(\theta, \phi) c_{e m}
$$

Some properties are $-l \leq m \leq l$
To find cam you multiply both sides by $Y_{\text {din }}^{*}(\theta, \phi)$, and then integrate over your

$$
\begin{aligned}
& \left.c_{e m^{\prime}}=\int f(\theta, \phi) Y_{l w^{\prime}}^{*}(\theta, \phi) d \Omega\right) \\
& \begin{array}{r}
\left.Y_{\text {em }}(\theta, \phi)=\left.\left|Y_{\text {em }}\right\rangle \quad \angle y_{\text {init }}\right|_{\text {tee }}\right\rangle=\delta_{\text {de }} \delta_{w^{\prime} m} \\
\text { orthocenality cold }
\end{array} \\
& \text { orthogonality cold. }
\end{aligned}
$$

One interesting way of writing the completeness condition is

$$
\begin{aligned}
& \sum_{j=0}^{\infty} \sum_{m=1}^{\ell} Y_{e m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) y_{l m}(\theta, \phi)=\delta\left(\cos (\theta)-\cos \left(\theta^{\prime}\right)\right) \\
& \delta\left(\phi-\phi^{\prime}\right) \\
& d \Omega=\sin \theta d \theta d \phi \\
& =-d(\cos \theta) d \phi \\
& Y_{00}=\frac{1}{\sqrt{4 x}} \& \begin{array}{c}
\text { correspond to a states } \\
\text { in } H \cdot \text { atom }
\end{array} \\
& l=1\left\{\begin{array}{l}
y_{11}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi} \\
y_{10}=\sqrt{\frac{3}{4 \pi}} \cos \theta \\
y_{1-1}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi}
\end{array}\right. \\
& r=2\left\{\begin{array}{l}
y_{22}=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{2 i \phi} \\
y_{1}=-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi} \\
y_{20}=\sqrt{\frac{5}{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)
\end{array}\right.
\end{aligned}
$$

Radiation Problems
There are these things that are called vector spherical harmonics.

$$
\begin{aligned}
& \vec{Y}_{l m}=V_{\text {em }} \hat{r} \\
& \vec{\psi}_{\text {lm }}=r \vec{\nabla} V_{\text {lm }} \\
& \vec{\nabla}=\frac{\partial}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial}{\partial \theta} \hat{\theta}+\frac{1}{\text { rains } \frac{\partial}{\partial \phi} \hat{\phi}} \\
& \vec{\nabla} y_{\text {em }} \text { is tangent to sphere }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\Phi}_{\mu m}=\vec{r} \times \vec{v} Y_{\text {dm }}
\end{aligned}
$$

$$
\begin{aligned}
& \int \vec{y}_{, m i} \cdot \vec{y}_{j m w^{\prime}}^{*} d \Omega=\delta_{g, s^{\prime}} \delta_{m \times v^{\prime}} \\
& \int \bar{\Phi}_{l m} \cdot \bar{\Phi}_{3: m^{\prime}}^{+} d \Omega=l(l+1) \delta_{g g^{\prime}} \delta_{m m^{\prime}} \\
& \int \vec{\psi}_{\text {min }} \cdot \vec{\psi}_{\text {sem }^{*}}^{*} d \Omega=l(l+1) \delta_{g l^{\prime}} \delta_{m m^{\prime}} \\
& \bar{\Phi}_{00}=\vec{\psi}_{00}=\phi
\end{aligned}
$$

$$
\begin{aligned}
& \text { do something like } \frac{\vec{\nabla}}{\nabla} \times() \\
& \vec{\nabla}(\phi): \quad \phi(r, \theta, \phi)=\sum_{k=0}^{\sum} \sum_{m=1}^{p} \phi_{g m}(r) y_{2 m}(\theta, \phi) \\
& \vec{\nabla}(\phi)=\sum_{l=0}^{\infty} \sum_{m=-\infty}^{\ell}\left(\frac{d \phi_{l m}}{d r} \vec{\gamma}_{l m}+\frac{\phi_{s m}}{r} \vec{\psi}_{2 m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{A}=\hat{A}_{\text {sm }} \quad \vec{A}_{\text {em }}^{v}(r) \vec{Y}_{e m}+A_{e m}^{\varphi}(r) \vec{\psi}_{e m}+A_{\text {em }}^{\Phi}(r) \vec{\Phi}_{2 m} \\
& \vec{\nabla} \cdot\left(A_{\text {em }}^{\prime}(r) \vec{y}_{\text {em }}\right)=\left(\frac{d A_{A_{\text {du }}}^{y}}{d r}+\frac{2}{r} A_{\text {em }}^{y}\right) V_{\text {em }} \\
& \vec{\nabla} \cdot\left(A_{\text {em }}(r) \vec{\psi}_{\text {gnu }}\right)=\frac{l(l+1)}{r} A_{e m}^{\psi}(r) Y_{\text {em }} \\
& \vec{\nabla} \cdot\left(A_{m m} \underline{\Phi}_{m}(r) \vec{\Phi}_{m m}\right)=\varnothing \\
& \vec{\nabla} \times\left(A_{2 a n}^{r}(r) \vec{Y}_{\text {em }}\right)=-\frac{1}{r} A_{\text {lm }}^{\prime}(r) \vec{\Phi}_{\text {sm }} \\
& \vec{\nabla}+\left(A_{l m}^{\sim}(r) \vec{\psi}_{l m}\right)=\left(\frac{d A_{l m}^{\psi}}{d s}+\frac{1}{r} A_{l m}^{\mu v}\right) \vec{\Phi}_{l m} \\
& \vec{\nabla} \times\left(A_{l m}^{\Phi}(r) \dot{\Phi}_{m m}\right)=\frac{-l(l+1)}{r} A_{\text {em }}^{\Phi^{\prime}} \vec{s}_{\text {sm }}
\end{aligned}
$$

Rewrite $\vec{\sigma} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$

Title: Jul 27-6:21 PM (6 of 8)

Maguatic Multipole expamesion.

$$
\begin{array}{ll}
\\
\vec{J}=J_{\Omega m}^{\delta}(r, t) \Phi_{2 m} & \vec{\nabla} \cdot \vec{J}=\phi\left\{n_{0} \rho\right\} \\
\vec{E}=E_{q m}^{\delta}(r, t) \dot{\Phi}_{2 m} & \vec{J} \cdot \vec{\varepsilon}=\phi
\end{array}
$$

For hormanic deperdence, overything goes like $e^{+i \omega t}$.

$$
\begin{aligned}
& \rightarrow\left\{\begin{array}{l}
\frac{l(l+1)}{r} E_{l n}^{(r)}=i \omega B_{l m}^{r} \\
\frac{\partial E_{2 m}}{d r}+\frac{E_{g m}}{r}=i \omega B_{l m}^{p}
\end{array}\right. \\
& \vec{\sigma} \cdot \vec{B}=\phi \rightarrow \frac{d B_{\mu m}^{y}}{d r}+\frac{2}{r} B_{e m}^{r}-\frac{\mu(l+1)}{r} B^{\phi}=\phi \\
& \vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} E_{0} i \omega \vec{B} \\
& \rightarrow-\frac{B^{r} \rho_{m}}{r}+\frac{d B_{2 m}^{r}}{d r}+\frac{B_{g m}^{\psi}}{r}=\mu_{0} T_{2 m}^{q}+i w \mu_{0} E_{0}^{\delta} \xi_{m}^{\sigma}
\end{aligned}
$$

Green's Functions

$$
V=\frac{\prime}{a f^{(6)}} \int \frac{p\left(r^{\prime}, t_{r}\right)}{r} d \tau^{\prime}
$$

Greens function is $\frac{1}{u r} \frac{1}{\pi}$
Diff. equ. $\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t}\right) v=-\rho / \epsilon_{0}$
To solve for a Green's function, solve $\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t}\right) v=-\delta^{\prime}\left(\vec{r}-\vec{r}^{\prime}\right) \delta\left(t-t^{\prime}\right)$

If $\rho\left(r, t_{s}\right)=\rho(r) e^{-i \omega t_{r}}$

$$
\begin{aligned}
& t_{r}=t-\frac{\pi}{c} \mu^{k} \\
&=\rho(r) e^{-i \omega t} e^{i \omega / c \pi} \\
& V(r, t)=\frac{1}{4 r^{k^{\prime}}} \int \frac{\rho\left(r^{\prime}\right) e^{-i \omega t} e^{i k \pi} d \tau^{\prime}}{\Gamma} \\
& V(r, t)=+e^{-i \omega t} \int \frac{\rho(r)}{\epsilon_{0}} \frac{e^{i k r}}{4 r r} d \tau^{\prime}
\end{aligned}
$$

Greens faction for harmonic distributions is $\frac{e^{i k r}}{44 \pi}$

