
MATH332-Linear Algebra Homework Three Solutions

Linear Transformations and Matrix Algebra

Text: 1.7-2.2 Section Overviews: 1.7-2.2

Quote of Homework Three Solutions

Suyuan: This feather may look worthless, but it comes from afar and carries with it all

my good intentions.

Amy Tan : The Joy Luck Club (1989)

1. Review and Warm Ups

1.1. Parameterized Vector Form. Given the following non-homogeneous linear system,

x1 + 3x2 − 5x3 = 4

x1 + 4x2 − 8x3 = 7

−3x1 − 7x2 + 9x3 = −6.

Describe the solution set of the previous system in parametric vector form, and provide a geometric comparison with the solution to the

corresponding homogeneous system.

Row reducing the augmented matrix gives,

[A|b] =

264 1 3 −5 4

1 4 −8 7

−3 −7 9 −6

375(1)

∼

264 1 0 4 −5

0 1 −3 3

0 0 0 0

375 ,(2)

which implies a general solution of the form,

x =

264 x1

x2

x3

375 = x3

264 −4

3

1

375+

264 −5

3

0

375 = xh + xp, x3 ∈ R,(3)

where xh is the solution to the corresponding homogeneous problem and xp is a particular solution for the coefficient data with this specific

right-hand side. From this form we conclude the solution this this problem is a line defined by xh shifted in space by the particular vector

xp.

1.2. Spanning Sets. Given,

A =

266664
−4 −3 0

0 −1 4

1 0 3

5 4 6

377775 .(4)

Do the columns of A form a linearly independent set? What is the spanning set of the columns of A?

Row reducing A to echelon form yields:266664
−4 −3 0

0 −1 4

1 0 3

5 4 6

377775 
266664

1 0 3

0 −1 4

−4 −3 0

5 4 6

377775 
266664

1 0 3

0 −1 4

0 −3 12

0 4 −9

377775 
266664

1 0 3

0 −1 4

0 0 0

0 0 7

377775 
266664

1 0 3

0 −1 4

0 0 7

0 0 0

377775
Since there are no free variables, these vectors are linearly independent.

Since there is not a pivot in every row, A does not span R4, but since there is a pivot in each column the vectors are linearly independent.

The span of this set of vectors is a three-dimensional subset of R4.
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1.3. Range of a Matrix Transformation. Given,

A =

264 1 −3 −4

−3 2 6

5 −1 −8

375 , b =

264 b1

b2

b3

375 .(5)

Show that there does not exist a solution to Ax = b for every b ∈ R3 and describe the set of all {b1, b2, b3} for which Ax = b does have a

solution.

Row reducing the corresponding augmented matrix yields:264 1 −3 −4 b1

−3 2 6 b2

5 −1 −8 b3

375 
2641 −3 −4 b1

0 −7 −6 b2 + 3b1

0 14 12 b3 − 5b1

375 
2641 −3 −4 b1

0 −7 −6 b2 + 3b1

0 0 0 b1 + 2b2 + b3

375
If b1 + 2b2 + b3 6= 0 the system is inconsistent. However, if b1 + 2b2 + b3 = 0⇒ b1 = −2b2 − b3, the system will be consistent. Thus, for all

b = b2

264−2

1

0

375+ b3

264 1

0

−1

375 the system is consistent. This forms a plane in R3, which represents the points in space that can be chosen for the

right-hand side so that the system is soluble.

2. Continued Work with Language

Answer each true/false question in the chapter 1 supplemental section on page 102. It is not necessary to supply justifications but if you

want your logic checked then feel free to provide a justification.

{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z} = {f,f,t,f,t,t,f,f,t,f,t,f,t,t,t,t,f,f,t,f,t,f,f,f,t,t,f}(6)

Please come to the office to see justifications from the solution manual.

3. Theory

3.1. Characterization of a Null Mapping. Suppose the vectors v1, . . . ,vp span Rn, and let T : Rn → Rn be a linear transformation.

Suppose, as well, that T (vi) = 0 for i = 1, . . . , p. Show that T is the zero-transformation. That is, show that if x is any vector in Rn, then

T (x) = 0.

We are given that the given set of vectors spans Rn from this we can conclude that every vector in Rn can be represented as a linear

combination of the given vectors. That is, for every x ∈ Rn,

x =

pX
i=1

civi.(7)

If we consider the linear transformation applied to this vector and note that T (vi) = 0 for i = 1, 2, 3, . . . , p we have,

T (x) = T

 
pX

i=1

civi

!
(8)

=

pX
i=1

ciT (vi) = 0.(9)

Thus, every vector in Rn is transformed to the zero-vector. A transformation that has this property is called a null-mapping.

3.2. Underdetermined and Square Matrix Transformations. If a linear transformation T : Rn → Rm maps Rn onto Rm then can

you give a relation between m and n? What if T is also a one-to-one transformation?

If T : Rn → Rm is such that it is onto Rm then its matrix representation is such that T (x) = b has a solution x ∈ Rn for each b ∈ Rm.

By theorem 1.4.4 on page 43 we have that the matrix representation of T has a pivot in every row. This cannot be guaranteed if there are

more rows than columns. Consequently, we conclude that m ≤ n.

If we also have that this matrix is one-to-one then the matrix representation must be such that T (x) = b has a one solution x ∈ Rn

for each b ∈ Rm. Thus, there must be a pivot in every row and no free-variables. That is, there must also be a pivot in every column.

Consequently, we conclude that m = n, for the mapping to also be one-to-one.
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3.3. Transforming Linear Combinations. Let T : Rn → Rm be a linear transformation. Show that if T maps two linearly independent

vectors onto a linearly dependent set of vectors, then the equation T (x) = 0 has a nontrivial solution.1

Note that, since they are linearly independent, neither u nor v can be zero by theorem 1.7.9 on page 69. Moreover, since their linear

transformations are dependent we conclude that the linear combination, c1T (u) + c2T (v) = 0 has a non-trivial solution. That is, there

exist c1 6= 0 or c2 6= 0 such that the dependence relation is satisfied. Thus, the linear transformation T of their linear combination gives,

T (c1u + c2v) = c1T (u)c2T (v) = 0.(10)

However, since neither u nor v is the zero-vector and since at least one of the constants is non-zero, the combination, c1u+ c2v, is generally

non-zero and thus T has a non-trivial solution.

4. Rotation Transformations in R2 and R3

Given,

A(θ) =

"
cos(θ) − sin(θ)

sin(θ) cos(θ)

#
.

4.1. Surjective Mapping. Show that this transformation is onto R2. 2

To show that this matrix is onto R2 one must show that there is a pivot in every row. Though this can be done via row-reduction it will

require scalings by sines/cosines and since scalings cannot be zero this restricts the values of θ. I will not do this. Instead, I will argue by

dependence relations. Specifically, we have page 67, a special case of theorem 1.7.7 on page 68, that says if a vector is a scaling of another

then the set of vectors is linearly dependent. If this is not true then the vectors are independent and if they are independent then there is

a pivot in every column of the corresponding matrix. Since this matrix is square there must also be a pivot in every row. To this end we

ask if there exists a scalar c such that, "
cos(θ)

sin(θ)

#
= c

"
− sin(θ)

cos(θ)

#
.(11)

Suppose that c = − cos(θ)/ sin(θ) then the first elements would be equal. However, this now imposes the condition,

sin2(θ) + cos2(θ) = 0,(12)

on the second variable, which is false. Thus, the first vector is not a scaling of the second and by theorem 1.7.7 they form a linearly

independent set. From this it follows that there is a pivot in every row and column of A, which implies that A is a one-to-one and onto

transformation.

4.2. Injective Mapping. Show that the transformation is one-to-one. 3

See the previous problem.

4.3. The Unit Circle. Show that the transformation Aî rotates î = [1 0]t counter-clockwise by an angle θ and defines a parametrization

of the unit circle. What matrix would undo this transformation?

The affect of the transformation applied to î is given by,

Aî =

"
cos(θ) − sin(θ)

sin(θ) cos(θ)

#"
1

0

#
=

"
cos(θ)

sin(θ)

#
,

which is a counterclockwise parameterization of the unit-circle for θ ∈ [0, 2π). To undo this consider the matrix At to get At î =

[cos(θ) − sin(θ)]t. This leads us to conclude that AAt = I, which means that A is a orthogonal transformation or a ridged change of

coordinates.

4.4. Determinant. Show that det(A) = 1.4

det(A) = cos(θ) cos(θ)−− sin(θ) sin(θ) = 1

1Hint: Suppose u,v ∈ Rn are linearly independent but T (u), T (v) ∈ Rm are not. First, what must be true of u + v? Also, what must be true of

c1, c2 for c1T (u) + c2T (v) = 0? Using these facts show that T (x) = 0 has a nontrivial solution.
2Recall that a transformation is onto if there exists an x for every b in the co-domain.
3Recall that a transformation is one-to-one if and only if T (x) = 0 has only the trivial solution.
4We haven’t discussed determinants yet but for 2× 2 there is an easy formula given by,

A =

"
a b

c d

#
=⇒ det(A) = ad− bc(13)

, which should look familiar from homework 2.1.2 associated with requirement for having only the trivial solution.

http://en.wikipedia.org/wiki/Unit_circle 
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4.5. Orthogonality. Show that AtA = AAt = I.

To formally show the orthogonality we verify either of the previous multiplications.

AAt =

"
cos(θ) − sin(θ)

sin(θ) cos(θ)

#"
cos(θ) sin(θ)

− sin(θ) cos(θ)

#
=

"
cos2(θ) + sin2(θ) cos(θ) sin(θ)− cos(θ) sin(θ)

cos(θ) sin(θ)− cos(θ) sin(θ) cos2(θ) + sin2(θ)

#
= I

4.6. Classical Result. Let A(θ)x = b for each θ ∈ S. Calculate,
x · b
|x||b| .

5 How is this related to θ? 6

This is a formula from vector calculus that should relate the dot-product of vectors to the angle between them. This result is general

but in this case we have a direct comparison. That is, we have already concluded that the affect of the matrix A on vectors from R2 is

to rotate them θ-radians counter-clockwise in the plane. So, we already know that the angle between x and b should be θ. The following

derivation,

x · b
|x| |b| =

cos(θ)x2
1 − sin(θ)x1x2 + sin(θ)x1x2 + cos(θ)x2

2p
x2

1 + x2
2

p
cos2(θ)x2

1 − cos(θ) sin(θ)x1x2 + sin2(θ)x2
2 + cos2(θ)x2

2 − cos(θ) sin(θ)x1x2 + sin2(θ)x2
1

(14)

= cos(θ),(15)

shows that this fact corresponds to the standard result from calculus.

4.7. Differentiation of Matrix Functions. If we define the derivative of a matrix function as a matrix of derivatives then a typical

product rule results. That is, if A,B have elements, which are functions of the variable θ then
d

dθ
[AB] = A

dB

dθ
+
dA

dθ
B. 7 Using the

identity AA−1 = I, show that
d
ˆ
A−1

˜
dθ

= −A−1 dA

dθ
A−1. Verify this formula using the A matrix given above.

Assuming that the matrix A is a function of the variable θ and differentiating the identity AA−1 = I with respect to θ gives,

d

dθ

ˆ
AA−1˜ =

d

dθ
[A] A−1 + A

d

dθ

ˆ
A−1˜(16)

=
d

dθ
[I] = 0.(17)

Solving for
d

dθ

ˆ
A−1˜ shows the necessary equality. Using the given matrix we have that,

d

dθ

ˆ
A−1˜ =

d

dθ

ˆ
At˜ =

"
− sin(θ) cos(θ)

− cos(θ) − sin(θ)

#
,(18)

while

−A−1 dA

dθ
A−1 = −At dA

dθ
At(19)

= −

"
cos(θ) sin(θ)

− sin(θ) cos(θ)

#"
− sin(θ) − cos(θ)

cos(θ) − sin(θ)

#"
cos(θ) sin(θ)

− sin(θ) cos(θ)

#
(20)

=

"
0 1

−1 0

#"
cos(θ) sin(θ)

− sin(θ) cos(θ)

#
(21)

= =

"
− sin(θ) cos(θ)

− cos(θ) − sin(θ)

#
,(22)

which agrees with our formula.

5Recall that x · y and |x| are the standard dot-product and magnitude, respectively, from vector-calculus. These operations hold for vectors in Rn

but now have the following definitions, x · y = xty and |x =
√

xtx.
6What we are trying to extract here is the standard result from calculus, which relates the dot-product or inner-product on vectors to the angle

between them. This is clear when we have vectors in R2 or R3 since we have tools from trigonometry and geometry but when treating vectors in

Rn, n ≥ 4 these tools are no longer available. However, we would still like to have similar results to those of Rn, n = 2, 3. To make a long story short,

we will have these results for arbitrary vectors in Rn but not immediately. The first thing we must do is show that |x · y| ≤ |x||y|, which is known as

Schwarz’s inequality. Without this we cannot be permitted to always relate
x · b
|x||b|

to θ via inverse trigonometric functions. These details will occur in

chapter 6 where we find that by using the inner-product on vectors from Rn we will define the notion of angle and from that distance. Using these

definitions and Schwarz’s inequality will then give us a triangle-inequality for arbitrary finite-dimensional vectors. This is to say that the algebra of

vectors in Rn carries its own definition of angle and length - very nice of it don’t you think? Also, it should be noted that these results exist for certain

so-called infinite-dimensional spaces but are harder to prove and that the study of linear transformation of such spaces is the general setting for quantum

mechanics - see MATH503:Functional Analysis for more details.

7To see why this is true differentiate an arbitrary element of AB to find
d

dθ
[AB]ij =

d

dθ

nX
k=1

aikbkj =
nX

k=1

daik

dθ
bkj + aik

dbkj

dθ
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4.8. Rotations in R3. Given,

R1(θ) =

2664
1 0 0

0 cos θ − sin θ

0 sin θ cos θ

3775 , R2(θ) =

2664
cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

3775 R3(θ) =

2664
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

3775 .
Describe the transformations defined by each of these matrices on vectors in R3.

It is best to think about this in terms of linear combinations of columns. Consider,

R1(θ)x =

2664
1 0 0

0 cos θ − sin θ

0 sin θ cos θ

3775
264x1

x2

x3

375 = x1

2641

0

0

375+ x2

264 0

cos(θ)

sin(θ)

375+ x3

264 0

− sin(θ)

cos(θ)

375 = x1

2641

0

0

375+

264 0

A

"
x2

x3

#375 ,
which implies that R1 leaves the x1 component of the vector unchanged and rotates the x2, x3 component of the vector in the x2, x3−plane.

Similar arguments show that R2 leaves x2 unchanged and rotates the vector in the x1, x3−plane while R3 leave x3 and rotates in the

x1, x2−plane. This lays the ground-work for the so-called Euler angles, which provides a systematic way to rotates geometries in R3.

An interesting consequence of the relationship between rotations in R3 and matrix algebra is that since these matrices do not commute,

[R1,R2] 6= 0 for θ 6= 0, the order one conducts the rotations matter. 8

With this idea one can argue that R2 is a counter-clockwise rotation of the (x1, x3)-plane about x2 and R3 is a counter-clockwise rotation

of the (x1, x2)-plane about x3.

5. Introduction to Linear Algebra for Quantum Mechanics

Define the commutator and anti-commutator of two square matrices to be,

[·, ·] : Cn×n × Cn×n → Cn×n, such that [A,B] = AB−BA, for all A,B ∈ Cn×n,

{·, ·} : Cn×n × Cn×n → Cn×n, such that {A,B} = AB + BA, for all A,B ∈ Cn×n,

respectively. Also define the Kronecker delta and Levi-Civita symbols to be,

δij : N× N→ {0, 1}, such that δij =

(
1, if i = j,

0, if i 6= j

εijk : (i, j, k)→ {−1, 0, 1} , such that εijk =

8><>:
1, if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),

−1, if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),

0, if i = j or j = k or k = i

respectively. Also define the so-called Pauli spin-matrices (PSM) to be,

σ1 = σx =

"
0 1

1 0

#
, σ2 = σy =

"
0 −i
i 0

#
, σ3 = σz =

"
1 0

0 −1

#
.

5.1. The PSM are self-adjoint matrices. Show that σm = σh
m for m = 1, 2, 3.

A matrix is self-adjoint if it is equal to its own complex conjugated transpose. That is, A is self-adjoint (also called Hermitian) if

A = Ah = Ā
t
. Notice that if a matrix has only real entries then self-ajoint implies symmetric. Clearly, for m = 1 and m = 3 the matrix is

real and symmetric an therefore self-adjoint. When m = 2 we write,

σh
y = σ̄y

t

=

"
0 −i
i 0

#t

=

"
0 i

−i 0

#

=

"
0 ī

ī 0

#
= σy.

Hence σy is self-adjoint.

8To see this take a textbook and orient it so that the spine is facing you and the cover is facing up. Rotate the text clockwise π/2 about the z-axis

then rotate it π/2 about the y-axis. At this point I am looking at the back of the textbook and the text is upside-down. Now do the rotations in reverse

order and you will see the lack of Commutativity.

http://en.wikipedia.org/wiki/Euler_angles
http://en.wikipedia.org/wiki/Commutator
http://en.wikipedia.org/wiki/Commutator#Anticommutator
http://en.wikipedia.org/wiki/Kronecker_delta
http://en.wikipedia.org/wiki/Levi-Civita_symbol
http://en.wikipedia.org/wiki/Pauli_matrices
http://mathworld.wolfram.com/Self-AdjointMatrix.html
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5.2. The PSM are unitary matrices. Show that σmσ
h
m = I for m = 1, 2, 3 where [I]ij = δij .

A matrix is unitary if UhU = I. That is, a matrix is unitary if its adjoint is also its own inverse. Since we already know that the PSM are

self-adjoint, σh
m = σm, we need only show that σ2

m = I for m = 1, 2, 3.

σ2
1 =

"
0 1

1 0

#"
0 1

1 0

#
"

0 · 0 + 1 · 1 0 · 1 + 1 · 0
1 · 0 + 0 · 1 1 · 1 + 0 · 0

#
= I

σ2
2 =

"
0 −i
i 0

#"
0 −i
i 0

#
= I

σ2
3 =

"
1 0

0 −1

#"
1 0

0 −1

#
= I

Hence, the PSM are unitary matrices.

5.3. Trace and Determinant. Show that tr(σm) = 0 and det(σm) = −1 for m = 1, 2, 3.

Given a matrix,

A =

"
a b

c d

#
,

we define the trace and determinant of A with the following matrix functions,

T = tr(A) = a+ d, D = det(A) = ad− bc.

It is easy to see that the PSM are traceless matrices. That is tr(σm) = 0 + 0 for m = 1, 2 and tr(σ) = 1− 1 = 0 for m = 3. Another quick

check shows,

det(σ1) = 0 · 0− 1 · 1 = −1

det(σ2) = 0 · 0− i(−i) = −1

det(σ3) = 1 · (−1)− 0 · 0 = −1

Generally, one can show that unitary matrices have determinant one or negative one.

5.4. Anti-Commutation Relations. Show that {σi, σj} = 2δijI for i = 1, 2, 3 and j = 1, 2, 3.

If we notice a couple of identities first then the busy-work is reduced. Specifically, note that {A,B} = {B,A} and {A,A} = 2A2. So, by

the self-adjoint and unitary properties we have, {σi, σi} = 2σ2
i = 2I for i = 1, 2, 3. For all other cases we expect the anti-commutator to

http://en.wikipedia.org/wiki/Unitary_matrix
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return a zero matrix. To show this we need only consider the following ordered pairs, (i, j) = {(1, 2), (1, 3), (2, 3)}. Doing so gives,

{σ1, σ2} =

"
0 1

1 0

#"
0 −i
i 0

#
+

"
0 −i
i 0

#"
0 1

1 0

#

=

"
i 0

0 −i

#
+

"
−i 0

0 i

#
= 0

{σ1, σ3} =

"
0 1

1 0

#"
1 0

0 −1

#
+

"
1 0

0 −1

#"
0 −1

1 0

#

=

"
0 −1

1 0

#
+

"
0 1

−1 0

#
= 0

{σ2, σ3} =

"
0 −i
i 0

#"
1 0

0 −1

#
+

"
1 0

0 −1

#"
0 −i
i 0

#

=

"
0 i

i 0

#
+

"
0 −i
−i 0

#
= 0

Taken together these statements imply that {σi, σj} = 2δij for i = 1, 2, 3 and j = 1, 2, 3.

5.5. Commutation Relations. Show that [σi, σj ] = 2
√
−1

3X
k=1

εijkσk for i = 1, 2, 3 and j = 1, 2, 3.

Again, to make quick work of this we notice that [A,B] = − [B,A] and [A,A] = 0. This implies that if the subscripts are the same

then [σi, σi] = 2
√
−1
P3

k=1 εiikσk = 0 since εiik = 0 by definition. As before we now only need to determine the commutator relation for

(i, j) = {(1, 2), (1, 3), (2, 3)} and note that if the subscripts are switched then a negative sign is introduced. Moreover, we can use the

previous results since the commutator is just the anti-commutator with a subtraction. Thus,

[σ1, σ2] = 2
√
−1

"
1 0

0 −1

#
= 2
√
−1σ3

[σ1, σ3] = 2

"
0 −1

1 0

#

= −2
√
−1

"
0 −i
i 0

#
= −2

√
−1σ2

[σ2, σ3] = 2
√
−1

"
0 1

1 0

#
= 2
√
−1σ1

this and noting the anti-symmetry of the commutator establishes the following pattern:

i j

3X
k=1

εijkσk

1 2 ε121σ1 + ε122σ2 + ε123σ3 = σ3

1 3 ε131σ1 + ε132σ2 + ε133σ3 = −σ2

2 3 ε231σ1 + ε232σ2 + ε233σ3 = σ1

Noting that εijk = −εjik completes the pattern.
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5.6. Spin− 1
2

Systems. In quantum mechanics spin one-half particles, typically electrons9 , have ‘spins’ characterized by the following

vectors:

eu =

"
1

0

#
, ed =

"
0

1

#
,

where eu represents spin-up and ed represents spin-down.10 The following matrices,

S+ =

"
0 1

0 0

#
, S− =

"
0 0

1 0

#
,

are linear transformations, which act on eu and ed.

5.6.1. Projections of Spin− 1
2

Systems. Compute and describe the affect of the transformations, S+(eu + ed), and S−(eu + ed).

The transformations S+ and S− have the following affects,

S+(eu + ed) = eu(23)

S−(eu + ed) = ed,(24)

which implies that each transformation chooses/selects the up/down vector when given their combination. That is, given a linear combination

of ‘up’ and ‘down’ vectors, the matrix S+ will create a system which has only the ‘up’ direction, while S− will create a system with only

the ‘down’ direction.

5.6.2. Properties of Projections. S+ and S− are projection transformations. Projection transformations are known to destroy information.

Justify this in the case of S+ by showing that S+ is neither one-to-one nor onto R2.

These projections are not invertible mappings.This can be seen in both matrices by their pivot structures. Neither have as many pivots as

columns and the invertible matrix theorem tells us that neither are invertible. Consequently, neither of the mappings are one-to-one nor

onto.

9In general these particles are called fermions. http://en.wikipedia.org/wiki/Spin-1/2, http://en.wikipedia.org/wiki/Fermions
10In quantum mechanics, the concept of spin was originally considered to be the rotation of an elementary particle about its own axis and thus was

considered analogous to classical angular momentum subject to quantum quantization. However, this analogue is only correct in the sense that spin obeys

the same rules as quantized angular momentum. In ‘reality’ spin is an intrinsic property of elementary particles and it is the roll of quantum mechanics

to understand how to associate quantized particles with spin to their associated background field in such a way that certain field properties/symmetries

are preserved. This is studied in so-called quantum field theory. http://www.physics.thetangentbundle.net/wiki/Quantum_mechanics/spin, http:

//en.wikipedia.org/wiki/Spin_(physics), http://en.wikipedia.org/wiki/Quantum_field_theory

http://en.wikipedia.org/wiki/Spin-1/2
http://en.wikipedia.org/wiki/Fermions
http://www.physics.thetangentbundle.net/wiki/Quantum_mechanics/spin
http://en.wikipedia.org/wiki/Spin_(physics)
http://en.wikipedia.org/wiki/Spin_(physics)
http://en.wikipedia.org/wiki/Quantum_field_theory
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