Transition rates and rate equations

- We have been looking from of the point of view of the photons. What about the atoms?
- Absorption of a photon induces a transition from level 1 to 2.

$$
\frac{d N_{1}}{d t}=-N_{1} W_{12} \quad \frac{d N_{2}}{d t}=N_{1} W_{12}=-\frac{d N_{1}}{d t}
$$

- The transition rate W_{12} must depend on the intensity and the incident frequency. We'll represent this by the spectral energy density.
- For a transition at a specific frequency, define

$$
W_{12}=B_{12} \rho\left(v_{0}\right) \quad \mathrm{B}_{12}=\text { Einstein " } \mathrm{B} \text { " coefficient }
$$

- Will generalize later for broadband light

Spontaneous emission

- An atom in an excited state can decay to another level through radiation = spontaneous emission

$$
\frac{d N_{2}}{d t}=-N_{2} A_{21} \rightarrow N_{2}(t)=N_{2}(0) e^{-A_{21} t} \quad \text { Lifetime of stat } \quad \tau_{2}=1 / A_{21}
$$

- If there are multiple destination states, rates add. Total decay out of level i :

$$
\frac{d N_{i}}{d t}=-N_{i} \sum_{j} A_{i j}
$$

Lifetime of state:

$$
\tau_{i}=1 / \sum_{j} A_{i j}
$$

- Note that spontaneous emission occurs w/o any incident light.

Einstein's treatment of emission and absorption

- Based on thermodynamic principles, Einstein predicted the existence of stimulated emission.
- First suppose we have only absorption and spontaneous emission.
- Rate equations for a two-level system (no SE):

$$
\frac{d N_{1}}{d t}=-N_{1} B_{12} \rho(v)+N_{2} A_{21} \quad \frac{d N_{2}}{d t}=+N_{1} B_{12} \rho(v)-N_{2} A_{21}
$$

- For atoms in dynamic equilibrium with the field, there is no net change in population densities

$$
0=-N_{1}^{(e)} B_{12} \rho(v)+N_{2}^{(e)} A_{21} \rightarrow \frac{N_{2}^{(e)}}{N_{1}^{(e)}}=\frac{B_{12} \rho(v)}{A_{21}}
$$

Thermal equilibrium with BB field

- An atom that is in thermal equilibrium has populations that follow the Boltzmann distribution:

$$
\frac{N_{2}^{(e)}}{N_{1}^{(e)}}=\frac{g_{2}}{g_{1}} e^{-h v_{21} / k_{B} T}=\frac{B_{12} \rho(v)}{A_{21}} \rightarrow \rho(v)=\frac{A_{21}}{B_{12}} \frac{g_{2}}{g_{1}} e^{-h v_{21} / k_{B} T}
$$

$-g_{1}, g_{2}=$ number of degenerate states at levels 1,2

- If there are more states available, the equilibrium population will be higher.
- Hydrogen atom: \quad is $g_{1}=2 \quad 2 p \quad g_{2}=6$
- Molecular rotation: number of states: 2/+1

Compare population ratio to blackbody

- If there is only absorption and spontaneous emission, we inferred that the spectral energy density in equilibrium must be:

$$
\rho(v)=\frac{A_{21}}{B_{12}} \frac{g_{2}}{g_{1}} e^{-h v_{21} / k_{B} T}
$$

- A field in thermal equilibrium should have the blackbody spectral energy density

$$
\rho_{B B}(v)=8 \pi \frac{v^{2}}{c^{3}} \frac{h v}{e^{h\left(v_{k} T\right.}-1}
$$

- What we have is ok in the high frequency limit, but not fully consistent with the BB curve.

Including stimulated emission

- Things make more sense if we allow for another route for transition from 2 to 1
- Add stimulated emission to rate equations:

$$
\frac{d N_{1}}{d t}=-N_{1} B_{12} \rho(v)+N_{2} B_{21} \rho(v)+N_{2} A_{21} \quad \frac{d N_{2}}{d t}=-\frac{d N_{1}}{d t}
$$

- Equilibrium: d/dt = 0

$$
\begin{aligned}
0=-N_{1}^{(e)} B_{12} \rho(v)+N_{2}^{(e)} B_{21} \rho(v)+N_{2}^{(e)} A_{21} \rightarrow \frac{N_{2}^{(e)}}{N_{1}^{(e)}}=\frac{B_{12} \rho(v)}{A_{21}+B_{21} \rho(v)} \\
\frac{N_{2}^{(e)}}{N_{1}^{(e)}}=\frac{g_{2}}{g_{1}} e^{-h v_{21} / k_{B} T}=\frac{B_{12} \rho(v)}{A_{21}+B_{21} \rho(v)}
\end{aligned}
$$

Equilibrium spectral energy density

- Solve for the equilibrium spectral energy density

$$
\begin{aligned}
& \frac{N_{2}^{(e)}}{N_{1}^{(e)}}=\frac{g_{2}}{g_{1}} e^{-h v_{21} / k_{B} T}=\frac{B_{12} \rho(v)}{A_{21}+B_{21} \rho(v)} \\
& \frac{g_{2}}{g_{1}} e^{-h v_{21} / k_{B} T}\left(A_{21}+B_{21} \rho(v)\right)=B_{12} \rho(v) \\
& \rho(v)=\frac{A_{21}}{B_{12} \frac{g_{1}}{g_{2}} e^{h v_{21} / k_{B} T}-B_{21}}
\end{aligned}
$$

- This looks similar in form to the blackbody relation

Einstein's relations between A and B coefficients

- If both the atoms and BB cavity are in thermal equilibrium, the $\rho(\mathrm{v})$'s that satisfy that constraint must be the same
$\rho_{B B}(v)=8 \pi \frac{v^{2}}{c^{3}} \frac{h v}{e^{h v / k_{B} T}-1}$

$$
\rho(v)=\frac{A_{21}}{B_{12} \frac{g_{1}}{g_{2}} e^{h v_{21} / k_{B} T}-B_{21}}
$$

- The two forms will have the same structure if

$$
B_{12} \frac{g_{1}}{g_{2}}=B_{21} \rightarrow \rho(v)=\frac{A_{21}}{B_{21}\left(e^{h v_{21} k_{B} T}-1\right)}
$$

- So the processes of absorption and stimulated emission are linked.
- Finally, for $\rho_{B B}(v)=\rho(v)$

$$
A_{21}=\frac{8 \pi h v^{3}}{c^{3}} B_{21}
$$

Physical significance of A/B

- Dimensionally, $\mathrm{B}_{21} \rho$ gives a rate, so in the relation between A and B,

$$
A_{21}=\frac{8 \pi h v^{3}}{c^{3}} B_{21}
$$

$\rho(v)=\frac{8 \pi h v^{3}}{c^{3}}$ is a type of spectral energy density.
In QED, the E and B energy densities are quantized, and the quanta are the photons.
$\rho(v)=\frac{8 \pi h v^{3}}{c^{3}}$ is effectively the spectral energy density of the vacuum fluctuations of the field.

Connect intensity changes to atomic rates

- In a volume V , absorbed power is $\frac{d P_{a}}{d V}=W_{12} N, h \nu$
- For a beam with area $\mathrm{A}, \frac{d P_{a}}{d V}=\frac{1}{A} \frac{d P}{d z}=-\frac{d I}{d z}$
- Intensity and energy density are related: $\rho c=I$

$$
\frac{d P_{a}}{d V}=-\frac{d I}{d z}=B_{12} \rho N_{1} h v \quad \frac{d I}{d z}=-I N_{1} \frac{B_{12} h v}{c}=-I N_{1} \sigma_{12}
$$

$$
\sigma_{12}=\frac{B_{12} h v}{c}
$$

Note that the mean free path of photons in the medium is $1 / \alpha$

Optical gain

- With population in both levels 1 and 2,

$$
\begin{aligned}
& \frac{d I}{d z}=I\left(N_{2} B_{21}-N_{1} B_{12}\right) \frac{h v_{21}}{c} \quad B_{12} \frac{g_{1}}{g_{2}}=B_{21} \\
& \frac{d I}{d z}=I\left(N_{2}-N_{1} \frac{g_{2}}{g_{1}}\right) \frac{B_{21} h v_{21}}{c}=I N_{i n v} \sigma_{21}
\end{aligned}
$$

Inversion density	Gain cross- section

$$
I(z)=I_{0} e^{g z} \quad \begin{aligned}
& \text { g: gain coefficient }=\mathrm{N}_{\text {inv }} \sigma_{21} \\
& \text { (opposite sign from absorption coefficient) }
\end{aligned}
$$

For an amplifier of length L ,

$$
I(L)=I_{0} e^{g L}=I_{0} G_{0} \quad \mathrm{G}_{0}: \text { small signal single-pass gain }
$$

