Transition rates and rate equations

- We have been looking from of the point of view of the photons. What about the atoms?
 - Absorption of a photon induces a transition from level 1 to 2.

$$\frac{dN_1}{dt} = -N_1 W_{12} \qquad \frac{dN_2}{dt} = N_1 W_{12} = -\frac{dN_1}{dt}$$

- The transition rate W_{12} must depend on the intensity and the incident frequency. We'll represent this by the spectral energy density.
- For a transition at a *specific* frequency, define $W_{12} = B_{12}\rho(v_0)$ B₁₂ = Einstein "B" coefficient
- Will generalize later for broadband light

Spontaneous emission

 An atom in an excited state can decay to another level through radiation = spontaneous emission

$$\frac{dN_2}{dt} = -N_2 A_{21} \to N_2(t) = N_2(0) e^{-A_{21}t}$$
 Lifetime of state:
 $\tau_2 = 1 / A_{21}$

• If there are multiple destination states, **rates** add. Total decay out of level *i* : Lifetime of state:

$$\frac{dN_i}{dt} = -N_i \sum_j A_{ij} \qquad \qquad \tau_i = 1 / \sum_j A_{ij}$$

• Note that spontaneous emission occurs w/o any incident light.

Einstein's treatment of emission and absorption

- Based on thermodynamic principles, Einstein predicted the existence of stimulated emission.
- First suppose we have *only* absorption and spontaneous emission.
- Rate equations for a two-level system (no SE): $\frac{dN_1}{dt} = -N_1 B_{12} \rho(v) + N_2 A_{21} \qquad \frac{dN_2}{dt} = +N_1 B_{12} \rho(v) - N_2 A_{21}$
- For atoms in dynamic *equilibrium* with the field, there is no net change in population densities

$$0 = -N_1^{(e)} B_{12} \rho(v) + N_2^{(e)} A_{21} \rightarrow \frac{N_2^{(e)}}{N_1^{(e)}} = \frac{B_{12} \rho(v)}{A_{21}}$$

Thermal equilibrium with BB field

 An atom that is in thermal equilibrium has populations that follow the Boltzmann distribution:

$$\frac{N_{2}^{(e)}}{N_{1}^{(e)}} = \frac{g_{2}}{g_{1}}e^{-hv_{21}/k_{B}T} = \frac{B_{12}\rho(v)}{A_{21}} \rightarrow \rho(v) = \frac{A_{21}}{B_{12}}\frac{g_{2}}{g_{1}}e^{-hv_{21}/k_{B}T}$$

- g_1 , g_2 = number of degenerate states at levels 1,2 - If there are more states available, the equilibrium population will be higher.
- Hydrogen atom: 1s $g_1 = 2$ 2p $g_2 = 6$
- Molecular rotation: number of states: 2/+1

Compare population ratio to blackbody

 If there is only absorption and spontaneous emission, we inferred that the spectral energy density in equilibrium must be:

$$\rho(v) = \frac{A_{21}}{B_{12}} \frac{g_2}{g_1} e^{-hv_{21}/k_B T}$$

• A field in thermal equilibrium should have the blackbody spectral energy density

$$\rho_{BB}(v) = 8\pi \frac{v^2}{c^3} \frac{hv}{e^{hv/k_BT} - 1}$$

 What we have is ok in the high frequency limit, but not fully consistent with the BB curve.

Including stimulated emission

 Things make more sense if we allow for another route for transition from 2 to 1

– Add stimulated emission to rate equations:

$$\frac{dN_1}{dt} = -N_1 B_{12} \rho(v) + N_2 B_{21} \rho(v) + N_2 A_{21} \qquad \frac{dN_2}{dt} = -\frac{dN_1}{dt}$$

- Equilibrium: d/dt = 0 $0 = -N_1^{(e)} B_{12} \rho(v) + N_2^{(e)} B_{21} \rho(v) + N_2^{(e)} A_{21} \rightarrow \frac{N_2^{(e)}}{N_1^{(e)}} = \frac{B_{12} \rho(v)}{A_{21} + B_{21} \rho(v)}$ $\frac{N_2^{(e)}}{N_1^{(e)}} = \frac{g_2}{g_1} e^{-hv_{21}/k_B T} = \frac{B_{12} \rho(v)}{A_{21} + B_{21} \rho(v)}$

Equilibrium spectral energy density

Solve for the equilibrium spectral energy density

$$\frac{N_2^{(e)}}{N_1^{(e)}} = \frac{g_2}{g_1} e^{-hv_{21}/k_B T} = \frac{B_{12}\rho(v)}{A_{21} + B_{21}\rho(v)}$$

$$\frac{g_2}{g_1}e^{-hv_{21}/k_BT}\left(A_{21}+B_{21}\rho(v)\right)=B_{12}\rho(v)$$

$$\rho(v) = \frac{A_{21}}{B_{12} \frac{g_1}{g_2} e^{hv_{21}/k_B T} - B_{21}}$$

This looks similar in form to the blackbody relation

Einstein's relations between A and B coefficients

 If both the atoms and BB cavity are in thermal equilibrium, the ρ(v)'s that satisfy that constraint must be the same

$$\rho_{BB}(v) = 8\pi \frac{v^2}{c^3} \frac{hv}{e^{hv/k_BT} - 1} \qquad \qquad \rho(v) = \frac{A_{21}}{B_{12} \frac{g_1}{g_2} e^{hv_{21}/k_BT} - B_{21}}$$

- The two forms will have the same structure if $B_{12}\frac{g_1}{g_2} = B_{21} \rightarrow \rho(v) = \frac{A_{21}}{B_{21}\left(e^{hv_{21}/k_BT} - 1\right)}$
- So the processes of absorption and stimulated emission are linked.
- Finally, for $\rho_{\scriptscriptstyle BB}(v) = \rho(v)$

$$A_{21} = \frac{8\pi h v^3}{c^3} B_{21}$$

Physical significance of A/B

• Dimensionally, $B_{21}\rho$ gives a rate, so in the relation between A and B, $8\pi hv^3 p$

$$A_{21} = \frac{8\pi h V^{3}}{c^{3}} B_{21}$$

 $\rho(v) = \frac{8\pi h v^3}{c^3}$ is a type of spectral energy density.

In QED, the E and B energy densities are quantized, and the quanta are the photons.

 $\rho(v) = \frac{8\pi hv^3}{c^3}$ is effectively the spectral energy density of the vacuum fluctuations of the field.

Connect intensity changes to atomic rates

- In a volume V, absorbed power is $\frac{dP_a}{dV} = W_{12}N_1hv$
- For a beam with area A, $\frac{dP_a}{dV} = \frac{1}{A}\frac{dP}{dz} = -\frac{dI}{dz}$
- Intensity and energy density are related: $\rho c = I$

$$\frac{dP_a}{dV} = -\frac{dI}{dz} = B_{12}\rho N_1 hv \qquad \qquad \frac{dI}{dz} = -I N_1 \frac{B_{12}hv}{c} = -I N_1 \sigma_{12}$$

Note that the mean free path of photons in the medium is $1/\alpha$

Optical gain

• With population in both levels 1 and 2,

$$\frac{dI}{dz} = I \left(N_2 B_{21} - N_1 B_{12} \right) \frac{hv_{21}}{c} \qquad B_{12} \frac{g_1}{g_2} = B_{21}$$

$$\frac{dI}{dz} = I \left(N_2 - N_1 \frac{g_2}{g_1} \right) \frac{B_{21}hv_{21}}{c} = I N_{inv} \sigma_{21}$$
Inversion Gain cross-section
$$I(z) = I_0 e^{gz}$$
g: gain coefficient = N_{inv} \sigma_{21}
(opposite sign from absorption coefficient)

For an amplifier of length L,

 $I(L) = I_0 e^{gL} = I_0 \mathbf{G}_0$

G₀: small signal single-pass gain