
Reading assignment. Schroeder, section 3.4.

0.1 The paramagnet revisited

Now we’ll explore in more detail the properties of the two-state paramag-
net, one of our toy systems. It’s actually much more than a toy, though,
since it is physically realizable to a good approximation. One of the prime
examples consists of a crystal lattice composed of atoms whose nuclei have
net magnetic moments that are weakly coupled to each other and very
weakly coupled to the lattice itself. This makes it possible for equilibrium
to be established among the magnetic moments much faster than between
the moment system and the lattice, and that makes it possible to explore
the rather curious properties of this system experimentally.

Recall that the magnetic moments in a two-state paramagnet arise from
the spins of particles, possibly electrons or particles in a nucleus. These
spin-1/2 particles have just two possible energy states in an external mag-
netic field, either aligned (“up”) with the magnetic field or antialigned
(“down”) with the field. The energy of a single moment is

E = −µ · B , (1)

and the quantization leads to just two possible energies E = ±µB:
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−µB
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The aligned (up) moments have lower energy than the antialigned moments.
Notice that the energies of the two alignments become equal as the strength
of the external magnetic field goes to zero, so we’ve chosen the zero of energy
to be that state, with the quantized energies in a nonvanishing field lying
symmetrically above and below that energy.

The total energy of a system of identical moments in an external field
is then

U =
∑

i

(±)iµB = µB(N↓ −N↑) . (2)

If the numbers of aligned and antialigned moments are not equal, the sys-
tems as a whole has a net magnetic moment and is said to be magnetized.
The net magnetic moment, or magnetization, is

M =
∑

i

(±)iµ = µ(N↑ −N↓) = nµ , (3)
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where n = N↑−N↓ is the net number of aligned moments. As you can see,
the energy can be written in terms of the magnetization:

U = −MB = −nµB . (4)

[EOC, Mon. 2/13/2006, #15; HW05 closed, due Mon. 2/20/2006]

The macrostates can be characterized by any of U , n, N↑, or N↓, and as
we’ve seen before, the number of corresponding microstates (multiplicity)
is given by the binomial coefficient

Ω(N,N↑) =
(

N

N↑

)
, (5)

just the number of ways of choosing N↑ up moments out of a total of N . It’s
just like flipping coins. Written as a function of the net number of aligned
moments, which is proportional to the energy, the multiplicity looks like:

Ω(N,n) =
N !(

N + n

2

)
!
(

N − n

2

)
!
. (6)

To find the entropy, S = k lnω, we’ll need the logarithm, but the ma-
nipulations will be a little easier if we first apply Stirling’s approximation,
then take the log. We’ll use the cruder form of Stirling’s approximation,

N ! ≈ NNe−N , (7)

omitting the factor
√

2πN , which limits us to very large values of N . With
that approximation, we have

Ω(N,n) ≈ NNe−N(
N + n

2

)(N+n)/2

e−(N+n)/2

(
N − n

2

)(N−n)/2

e−(N−n)/2

=
2N(

1 +
n

N

)(N+n)/2 (
1− n

N

)(N−n)/2
.

(8)

The logarithm is then, with no further approximations,

lnΩ(N,n) ≈ N ln 2

− N

2

[(
1 +

n

N

)
ln

(
1 +

n

N

)
+

(
1− n

N

)
ln

(
1− n

N

)]
.

(9)

The entropy is simply k lnΩ, but it will be convenient to express it as
a function of U = −nµB, rather than n:

S(U,N) = k lnΩ(N,U)

≈ kN ln 2− kN

2

[(
1− U

NµB

)
ln

(
1− U

NµB

)
+

(
1 +

U

NµB

)
ln

(
1 +

U

NµB

)]
.

(10)
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Now, let’s see what the entropy looks like as a function of U . There is
a low-energy limit, in which all the magnetic moments are aligned with the
external field. In this limit n→ N and U → Umin = −NµB, which makes
the factor (

N − n

2

)
! = 0! (11)

in the exact expression for the entropy. In view of the presence of this
vanishing argument to one of the factorials, we should be cautious about
using the approximate forms we’ve derived via Stirling’s approximation in
this limit. In fact, our approximate forms do give the correct limiting values
of the entropy in the low-energy and high-energy limits, but we’ll have more
confidence in the result if we use the exact expression to find those limiting
values:

Ω(N,N) =
N !(

N + N

2

)
!
(

N −N

2

)
!

= 1 . (12)

This means the entropy S = k lnΩ vanishes at the low-energy limit U =
−NµB. It’s easy to see that the same is true at the upper limit U =
Umax = NµB. Notice that the energy limits for the system are symmetric,
Umin = −Umax, since we chose the zero of energy for a single moment to be
centered between the energies of the two states.

As we’ve seen in the homework, the binomial coefficient reaches a max-
imum at its midpoint. This means the entropy does as well, and the exact
value at the midpoint is just

Smax = k ln
N !

[(N/2)!]2
. (13)

The value at the maximum, based on our approximate expression for S(U,N),
valid for large N , is easily seen to be

Smax ≈ kN ln 2 , (14)

when U = 0. It can also be obtained from the exact value of Smax by
applying Stirling’s approximation. We’ll see explicitly in a little while that
the partial derivative of S with respect to U really does vanish at U = 0.

With these characterizations of S(U,N) in mind, we should find it very
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plausible that its graph, for fixed N , looks like:
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You may recall that I described that curve once before, when discussing
the concept of temperature as the inverse of the derivative of S with respect
to U :

1
T

=
(

∂S

∂U

)
V,N

, (15)

though there’s no volume dependence in the ideal two-state paramagnet
problem. We’ll find that this system exhibits some very unusual thermal
behavior, but before we try to understand that, it would be useful to un-
dertake an exercise that will help us to review the connection between the
derivative ∂S/∂U and thermal behavior in normal systems.

Exercise. [Not collected] This is Schroeder’s Problem 3.3, on p. 90, re-
worded somewhat. Suppose we have two “normal” systems, where by “nor-
mal” I mean they have entropy functions S(U) that grow without bound
as the energy increases, the energy itself being capable of growing without
bound. The Sackur-Tetrode entropy expression for the ideal gas is an ex-
ample. The entropy curves for the two systems are shown here, drawn to
the same scale:

UB
UB,initial

SBSA

UA
UA,initial

The initial energies of the systems, prior to establishment of thermal contact
between them, are indicated. They are then brought into thermal contact,
but remain isolated from anything else. Explain what happens subsequently
and why, without using the word “temperature.”
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Answer: The slopes of the S(U) curves give a measure of the rate at
which the entropy changes for a small change in energy:

∆S =
∂S

∂U
∆U . (16)

If we imagine a small amount of energy being transferred from system A
to system B, the fact that the slope of SB(UB) at UB,initial is smaller than
that of SA(UA) at UA,initial means that the increase of the energy of B
results in a smaller increase in its entropy than the decrease in entropy of
A resulting from its loss of energy. That would make the total entropy of
the combined system, ∆S = ∆SA + ∆SB , decrease, contrary to the second
law of thermodynamics—it would cause a decrease in the multiplicity of
the combined system.

If the energy were transferred from B to A instead, then the overall
entropy would increase, since the entropy of A would go up faster with
energy than that of B would go down. Thus, increasing overall entropy
requires energy to be transferred from the system with the smaller slope to
the system with the greater slope. At the point where the energies are such
that the slopes are equal, there is no further entropic benefit to transfer of
energy in either direction, so the combined system settles into equilibrium
when that condition is reached.

Recalling the definition of temperature:

1
T

=
∂S

∂U
, (17)

you’ll see that the system with the smaller slope of S(U) has the higher
temperature. So energy is transferred until the slopes, and therefore the
temperatures, are equal.

Now let’s think a bit about the meaning of the curve S(U) for the
two-state paramagnet. At negative energies, the majority of the moments
are aligned with the external field, and the slope of S(U) is positive. The
slope decreases with increasing energy, indicating an increase in tempera-
ture, or a decrease in coldness (1/T ). Eventually, U = 0 is reached, and
the slope of S(U) vanishes, corresponding to infinite temperature or zero
coldness. If any additional energy is added to the system, the slope and the
temperature become negative, as does the coldness. But notice that the
temperature then increases from negative infinity as the energy increases
above U = 0, whereas the coldness merely passes continuously through
zero to become negative. Thus coldness, or 1/T is a more mathematically
palatable measure of the tendency of the system to accept or give up energy
than is the temperature, which is discontinuous.

If we put one of these systems with U < 0 in thermal contact with
a normal system, the two will behave normally, in that the one with the
greater slope of S(U), that is, greater coldness, will absorb energy from
the one with the smaller slope. But it’s clear that there is no way to heat
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the paramegnet to energy U > 0 by placing it into thermal contact with
any normal system. There are no normal systems with temperature greater
than infinity or coldness less than zero! The only ways to add more energy
to a paramagnet with U = 0 are nonthermal, and a very clever approach
is to do it through experimental trickery. The system is equilibrated with
its environment at finite temperature, so that an excess of the moments
are aligned with the external field. Then the field is quickly reversed, and
the system is tricked into being in a state of positive energy and negative
temperature.

Then what happens? Well, the system is in thermal contact with a
normal system (its environment), and the one with the larger derivative
∂S/∂U is colder, so it absorbs energy from the other one. The paramagnet
has negative coldness (negative slope) in this high-energy state, so all nor-
mal systems are colder and will absorb energy from it. Thus, energy flows
out of the paramagnetic system to its surroundings. This happens because
the entropy of the combined system is maximized in thermal equilibrium.
Reduction of the energy of the paramagnetic system when U > 0 increases
its entropy (look at the curve), and an increase in the energy of a nor-
mal system increases its entropy. Thus, the total entropy always increases
whenever energy is transferred from a negative-temperature system to a
positive-temperature system. This means negative temperatures are hotter
than positive ones.

HW Problem. Schroeder problem 3.21, p. 107.

HW Problem. Schroeder problem 3.23, p. 107.

HW Problem. Schroeder problem 3.25, p. 108.

[EOC, Wed. 2/15/2006, #16]

Now let’s calculate the inverse temperature explicitly from our expres-
sion for the entropy:

1
T

=
(

∂S

∂U

)
N

= −kN

2

[
− 1

NµB
ln

(
1− U

NµB

)
− 1

NµB

+
1

NµB
ln

(
1 +

U

NµB

)
+

1
NµB

]

=
k

2µB
ln

1− U

NµB

1 +
U

NµB

.

(18)

It’s easy to see that the coldness vanishes at U = 0, goes to positive infinity
at U → −NµB, and goes to negative infinity as U → NµB. Here’s the
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plot:
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Notice that it’s nice and continuous away from the infinities at the energy
extrema. By contrast, its inverse, the temperature has a nasty discontinuity
right at zero energy:
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This is why I claimed above that coldness, or 1/T , is a more useful quantity
than temperature, at least in these systems that can have entropy that
decreases with increasing energy.

Now, it’s often useful to know the dependence of U on T , expecially
if we want to find the heat capacity. To solve for U , just exponentiate
2µB/kT , solve for U/NµB, and rearrange slightly, obtaining

U = NµB
1− e2µB/kT

1 + e2µB/kT

= −NµB tanh
µB

kT
.

(19)
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That last step can be obtained by factoring out eµB/kT from both the
numerator and denominator, then making use of the definitions of sinhx
and cosh x in terms of exponentials with real arguments and the definition
of tanh x as sinhx/ coshx. Of course, a plot of U(1/T ) just looks like the
plot of 1/T (U) turned on its side:
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Since the energy and the magnetization are proportional, this also gives
us an expression for the magnetization as a function of T :

M = −U

B
= Nµ tanh

µB

kT
. (20)

The heat capacity can now be calculated from U(T ):

CB =
(

∂U

∂T

)
B,N

= Nk

(
µB

kT

)2 (
1− tanh2 µB

kT

)
= Nk

(µB/kT )2

cosh2(µB/kT )
.

(21)

If we think about what was special about this system, that is, what
endows it with the strange capability of having negative temperature, we’ll
see that the key is the fact that the macrostate multiplicity, and therefore
the entropy, has a maximum between the extremes of energy. That arises
because the energy is bounded from above, as well as from below, and there
are fewer ways to choose aligned moments when their number is close to the
total number of moments than when their number is half that total. That
is, there are fewer ways to distribute the energy among the constituents,
when most have high energy or most have low energy, than when their
numbers are more evenly balanced. Thus, it’s the existence of a maximum
energy per constituent, hence overall, that gives this system its peculiar
properties. No system having constituents with kinetic energy, which is
unbounded, can have negative temperature.
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It’s worth noting that this system is mathematically identical to a num-
ber of other systems, among them the random walk in one dimension and
the binary alloy, though in the latter, the interactions between the con-
stituents generally play an important role, just as is the case in ferromag-
netic systems.

Reading assignment. Schroeder, sections 3.5 and 3.6.

0.2 Mechanical contact

As we’ve seen, the partial derivative of the entropy (∂S/∂U)V,N , which
we have defined to be the inverse temperature, plays the central role in
determining the direction of energy flow when two systems are placed in
thermal contact. The system with the larger value of that derivative is
colder than the other one, and the entropy increases when energy flows
from the hotter system to the colder one. Energy flow in the opposite di-
rection is not absolutely forbidden, but it simply doesn’t happen because
that would require the combined system to change to a macrostate with
fewer microstates. Thus, probability, and therefore the second law of ther-
modynamics, requires energy flow from the hotter system to the colder
one.

But the entropy is generally also a function of other macroscopic vari-
ables besides the energy; for simple systems,

S = S(U, V,N) , (22)

the Sackur-Tetrode expression for the entropy of the ideal gas being a
prime example. It is natural to suppose, indeed it should be obvious, that
the other partial derivatives of S must also play roles similar to that of
(∂S/∂U)V,N in the establishment of equilibrium between systems that can
exchange those other variables, V , and N upon which S depends. In this
section, we’ll explore the role of (∂S/∂V )U,N for systems in mechanical
contact, and in the next section we’ll look at the role of (∂S/∂N)U,V for
systems in diffusive contact.

Consider a pair of systems separated by a movable, diathermal partition,
so they can exchange both volume and energy. As usual, they are to be
isolated from everything else, so the total energy is fixed:

U1 + U2 = U = constant , (23)

as is the total volume:

V1 + V2 = V = constant . (24)

The particle numbers N1 and N2 are individually fixed, since particles
cannot penetrate the partition.
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The condition for equilibrium, the maximization of the entropy of the
combined system with respect to exchanges of both volume and energy, re-
quires the partial derivatives of S with respect to parameters characterizing
both energy exchange and volume exchange to vanish. We’ll take the en-
ergy U1 of the first system to characterize the energy distribution between
the systems, so in equilibrium we must have(

∂S1

∂U1

)
V1,N1

=
(

∂S2

∂U2

)
V1,N1

or
1
T1

=
1
T2

. (25)

To characterize the distribution of volume between the two subsystems,
we’ll make the analogous choice of V1 as the parameter. In this case, the
total entropy can be expressed in terms of that parameter as:

S(U1, V1) = S1(U1, V1) + S2(U2, V2)

= S1(U1, V1) + S2(U − U1, V − V1) ,
(26)

where the particle numbers have been suppressed. In equilibrium, the par-
tial derivative of S with respect to V1 must vanish:(

∂S

∂V1

)
U1

=
(

∂S1

∂V1

)
U1

+
(

∂S2

∂V1

)
U1

=
(

∂S1

∂V1

)
U1

+
(

∂S2

∂V2

)
U2

dV2

dV1︸︷︷︸
−1

= 0 .

(27)

This gives us a way to express the condition for equilibrium in terms of
the partial derivatives of the subsystem entropies with respect to their
individual entropies: (

∂S1

∂V1

)
U1

=
(

∂S2

∂V2

)
U2

. (28)

This should all look very familiar, as it is exactly analogous to the calcula-
tion we did originally for energy exchange by systems in thermal contact.

We can discover the significance of those derivatives by considering a
system consisting of a fluid (real gas or liquid) behind a piston with force
applied by a compressed spring:

A

x
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The entire system is isolated, so its total energy Utot is fixed. The energy
of the fluid system is

U = U(x) = Utot −
1
2
Kx2 , (29)

where K is the spring constant, and x is the distance by which the spring is
compressed from its equilibrium length. The volume occupied by the fluid
is

V = V (x) = V0 + Ax , (30)

where A is the cross-sectional area of the piston, and V0 = V − Ax is
the volume that would be occupied by the fluid if the spring were in its
equilibrium position.

The entropy of the system is then a function of the compression of the
spring:

S = S(U, V,N) = S[U(x), V (x), N ] , (31)

and the condition for equilibrium of the system is

dS

dx
=

(
∂S

∂U

)
V,N

dU

dx
+

(
∂S

∂V

)
U,N

dV

dx

=
1
T

(−Kx) +
(

∂S

∂V

)
U,N

A

= 0 .

(32)

Thus, in equilibrium the partial derivative has the value(
∂S

∂V

)
U,N

=
Kx

AT
=

F

AT
=

P

T
, (33)

where F = Kx is the magnitude of the force exerted on the piston by the
spring. So the slope of S(V ) when U and N are held fixed is proportional
to the pressure.

Let’s try plugging that into our equilibrium condition:(
∂S1

∂V1

)
U1,N1

=
(

∂S2

∂V2

)
U2,N2

⇒ P1

T1
=

P2

T2
. (34)

Since we know the temperatures must be equal in equilibrium, this implies
the pressures must also be equal:

P1 = P2 . (35)

That shouldn’t be too surprising—if they weren’t equal, there would be a
net force on the partition, and it would shift until the force vanished.

With that result from the ideal gas in mind, we’ll now simply take(
∂S

∂V

)
U,N

=
P

T
(36)
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to define P , once T is defined by ∂S/∂U = 1/T .
Now we have macroscopic parameters T and P that characterize the

state of a system and can be used to see how entropy changes when the
corresponding variables U and V are changed:

dS =
(

∂S

∂U

)
V,N

dU +
(

∂S

∂V

)
U,N

dV (N fixed) (37)

which implies

dS =
1
T

dU +
P

T
dV (38)

This should be remembered, along with S = S(U, V,N).
Alternatively, we can rearrange this to get

dU = T dS − P dV (39)

which is the more common form. This also follows from U = U(S, V,N):

dU =
(

∂U

∂S

)
V,N︸ ︷︷ ︸

T

dS +
(

∂U

∂V

)
S,N︸ ︷︷ ︸

−P

dV (N fixed) (40)

To see the identification of (∂U/∂V )S,N with pressure, set the total dif-
ferential dS of the entropy to zero, thus establishing the constant-entropy
condition. This gives

1
T

dU +
P

T
dV = 0 , (41)

which can be rearranged to find(
∂U

∂V

)
S,N

=
−P/T

1/T
= −P . (42)

HW Problem. Schroeder problem 3.31, p. 114.

HW Problem. Schroeder problem 3.32, p. 114.

HW Problem. Schroeder problem 3.34, pp. 114–115.
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