Model laser cavity

V,=l, A, = active mode volume

a OC
‘ # V=A,L= mode volume
R
L=L, +I, 2
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Laser dynamics equations, initial conditions

e Coupled equations for photon number and inversion density

d¢ ¢
=VBN,(0+1)—

dt a 2(¢ ) Tc

djl\tfz =R,—BON,—N, /7,

Initial conditions (t=0)

e ‘cold’ cavity (gain switching, relaxation oscillations)

— R, was at 0 (no pump), the pump turns on
— N, startsat 0

— No lasing, but ¢=1, representing 1 photon populating the laser mode
(QED vacuum fluctuations that stimulate spontaneous emission)

e Q-switching

— Rp on before t<0, N2 in equilibrium, but no lasing



Laser start-up dynamics

e “cold” cavity: pump turns on ¢=0
dN2 —R —N./T Cavity blocked
a N,/Ny, 100
_ 8
N, (t)zRP‘czl(l—e ”Tﬂ) )
e Once threshold is reached A
¢ starts to build up exponentially
dg ¢
_t = VaBN 2¢ - 500 1000 1500 2000 2500 3000
X t (1)

— For operation just above threshold, let

N,=N, +5N, th:% T =Liyc
(0}

do o

Y@ _vB(N. +6N.)o—2

Cc



Relaxation oscillations

e Spiking of laser output before stabilization

Ny/Ny, 1

®/@,

1.0}

05

Lag time for photon build-
up allows pumping to go
above threshold

15

10

Laser power spikes high
and depletes the stored
energy, terminates
lasing

Excited state population
builds up again, starting

50 100 150 200 250 300 t(ws) atahigherlevel



Small-signal analysis of relaxation

oscillations
e [nversion density: start from time dependent equation
dN
d—;:RP—B¢N2—N2 /T21

* Assume small departure from equilibrium, constant R,

dN’ , : :
— =R, —B(¢,+¢')(N,+ N’ )—(N, +N’)/1,,

dN’
dt

— Neglect products of small terms

=R, —B(¢,N, +¢'N, +9,N'+¢'N")—(N, +N’)/ 1,,

— Equilibrium values add to zero

dN’
dt

= —[ngo + LjN’— B¢’'N,

21




Small-signal analysis of relaxation
oscillations

e Photon number: start from time dependent equation

dg ¢
— =V BN,(p——
dt a 2¢ TC
* Assume small departure from equilibrium, constant R,
d¢’ , N (9 +¢
; =VaB(NO+N)(¢O+¢)—( ) 9)
t T,
do’ +¢’
j’ =V, B(Ny, + N'9, + N,¢' + N'¢’)— (9,+9')
t T,
— Neglect products of small terms
— Equilibrium values add to zero
do’ 1 do’
=|VBN,—— |0"+V BN’ =V BN’
dt ( a 0 - jgb a ¢0 dt a ¢0

c




Coupled equations: damped SHO

e Convert two 15t order eqns to one 2" order

dN” _ —(ngo + LjN’— B¢’N,

dt -
d*N’ 1 \dN’ _ do¢’ d¢’ ,
=—| By, + ~-B—N =V.BN'¢
dt® [ % T, ] dt dt ° dt :
d’N’ 1 \dN’ 1
+| Bo, + +B(V.BN'¢,)N,=0 |[V,BN,——=0
dt2 [ ¢0 ,1_21 j dt ( a ¢O) 0 a 0 TC

277 1 ’ B
d12]+(B¢0+ ]dN+ ¢°N’:O
dt T, ) dt T

(4




Relaxation oscillation solution

e Compare to standard SHO equation:

2 a77
ddjzl + +Q N’ =0
t

dt 71 dt* 1, dt

Cc

T21

1 " B d’N’ 2 dN’
+(Bq>0+ )dN+ ¢°N’:O

e Expect exponential solutions  N’(t)= Nje”

2 1 1
p2+t—p+Q§:O %p:——i\/—z—gg

0 tO tO
e QOscillatory solutions if
1 1
QO > — — Q= Q(z) -
[ l,

N’(t)=Nje " cos(Qz+ ) ¢'(t)=ge" sin(Qt + )



Dynamic solutions

e Change in N leads response in ¢

1.0

stV
-y

-10}

e Damping timescale depends on pumping level

ty =27, /X x=P /P,
o Oscillation frequency o _ *—1
’ TCT21

- Typically no oscillations, spiking in gas lasers
- Ripple in pump can drive oscillation



Relaxation oscillations in a gain-switched
CeNd:YAG laser

e Square pump pulse

Oscillations

| Cavity decay
. /

Onset of lasing

Transient behavior can lead to quantitative information about laser



Gain switching: controlled relaxation

oscillation
Pulse laser by stopping pump after first initial spike

100 150 200 250 300 Output pulse is short, but ps scale
121
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6
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2|
|| 5, ltime (u9))
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Q-switching

Use an additional component to hold off lasing to
allow build up of stored energy

— Inversion density can reach levels much higher than
threshold

Active g-switch: can trigger externally

— Electro-optic, Acousto-optic

Passive g-switch: cheaper,

— Saturable absorber, e.g. dye, Cr:YAG, ...
Pumping:

— Pulsed pump: deliver pump energy int<t,,

— CW pump: repetitive Q-switching, high reprate.
Optimization for average power vs peak pulse energy



Q-switching dynamics

e Start with high inversion density

e Fast opening of switch

10}

1.5x107 ¢
10x1017 ¢

50x1016 |

50

6 t(ns)

Output pulse is orders of
magnitude shorter duration
than gain switching.

Leading edge duration:

- Gain controls build up time

- Hold-off of buildup allows
the gain to reach high values

Trailing edge duration:
- Saturation and cavity loss



Electro-optic g-switch

e High voltage on nonlinear crystal controls
birefringence: 0 to quarter-wave

Laser diod
Variable-reflectivity loges

output mirror [— == e e p——— Folding
' prism
< | ‘/\/\N\/\Z\/\ |
Nd:YAG slab 1

A

Rear Pockels A4 Polarizer Cylindrical
mirror cell lens

Fig. 5.50. Diode-pumped Nd:YAG slab laser with positive-branch unstable resonator and variable reflec-
tivity output coupler [5.76]



Acousto-optic g-switch

e RF transducer launches high amplitude sound wave in
crystal

e \Wave acts as a grating and scatters light out

Undeflected beam

(signal off)
\
\ Acoustic signal Acousto-oplic
High- \ _~ deflector
refleclivity ) 7
mirror

\‘. > ,'/
"‘\.‘. - Laser rod Y“ OQutput
x . - > '7 >
/’/--I A

7 Partial
_~~ Deflected beam mirror
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Fast Q-switching dynamics: pumping

dg ¢ dN
E:VaBNzﬁb—T— al—;:RP—B(/’)NZ—NQ/T21
e We can separate steps since timescales are different

e Pump phase (Q-sw closed) ¢, =0

dN
dl‘2 =R,—N, /1,
— Pump pulse duration << fluorescence time
dN,
R JR N =
dt V hv

— After pumping, inversion is below threshold for closed cavity
— Inversion is above threshold for open cavity
N.. E 4
— init  __ P Nth —

pump
N h E or Glecry




Fast Q-switching dynamics: build-up

e Q-sw opens, photon number can accumulate
— For sufficient gain, build up is faster than fluor time

— Before saturation, N, is steady = N, , N, .
d¢ ¢ i pump Nh
—=VBN, . ¢——=|V BN, . ——
dt a lnlt¢ Tc ( a it TC )¢ ,Z.c — L/}/C
do 1 G, C y 1), N =—71
—=|VBX N —— |¢p=|V ——X — th
dt [ a pump” " th TC jd) ( a V pump G2llcry TC ]d) Glecry

0,,C
df _| oy y 1], _¢ b=
—L=| ZcX -~ =—(x -1 V
dt (L LT, ? TC( o )




Fast Q-switching dynamics: pulse peak

e At peak of pulse, slope of pulse shape =0

do 0 1 1
—=VBN,0——=|VBN,—— [0=0—> N, = =N

C C

10
— N, has dropped down to N,

o After peak, photon number decays
- N2=Nﬁn
— Ng,~0 if enough saturation

8
6
2

1.5x 1017
— = —T— %¢(t)~¢pk eXp[—t/Tc] 1.0x 1017

50x1016




Peak photon number in Q-switched pulse

 Trick toget ®,:
- if we neglect fluorescence, ¢ and N, are connected
- Also negect pumping during pulse duration

d¢ _ d¢/dt _VaBN2¢_¢/Tc__V+ 1
dN, dN,/dt —BON, “ BTN,

- Integrate from initial to peak

Ny, 1 |
¢pk_0: Jt(_%+BTCN2 )JNZ :‘/a(Ninit_Nth)_Eln|:

Nipi ¢

¢pk = Nim't
Va

= photons extracted - photons lost during build-up

~N,-N,In[X,,, |



Peak output power

e Qutput power is proportional to photon number

hv
P ()= rs o(1)
RT
_Y,hv _Y,hv
Py = ; O = ; Ve (Nlmt — Ny =Ny, ln[XpumP ])
RT RT
_Yhv 1
Ppk T VN | 1= B n[XP”’"P]
RT

1
P, = ;'—RZTEM (1 _ X—(l +n[X ., ])]



Total photon number

e |ntegrate over history of pulse

dg 0
L =VaBN 0= [dp=p()-9(0)=0

C

j(VaBN2¢—T£jdt :VajBN2¢dt_Ticj¢dt _

Cc

e Getqtyinred from N, equation:

dN,
dt

2= _B¢N, > N, :Jqudet

lnlf

N, = inversion density

J(pdt TV J.BN pdt =1V, (N”m Nﬁn) left after pulse



Q-switched output energy

e Qutput energy from OC results from integration over total
photon number

f F,.()dt = yTszv J O(t)dt j pdt=1,V,(N,,—N,,)
:yzhvﬁfcva (Ninit_Nﬁn) t.=Lfyc
L
72hvﬁ%‘/ (Nimt N ) ;/}2/ hvV, (Ninit _Nﬁn)

= v

Output coupling/total losses
P pling/ Total energy extracted

Eout yz hVV let Ni”i’ - Nﬁ” = hlzz'lal't7/IE e =Extraction
2y 2y efficiency

init



Q-switching extraction efficiency

e When pulse finishes, some stored energy can be left

e To get final inv density, integrate ¢d(N) from initial to final

J‘MN)dN =0-0= Va(Ninit _Nﬁn)_Lln{M}

Bt, | N,

— Extraction efficiency:

Ninil‘ - Nﬁn 1 Ninit Nth Nimt
nE = = ln = ln
Ninit BTcVaNinit N in Ninit Nﬁn
N 1
n,=1-—L 5 —& =
N N, 1-n,
Xpump — Ninit r]E 0'8;
Ny 06!
, L { 1 } 04l
— n 7
'3 — 0.2}
X pump 1 nE ’




Estimate Q-switched pulse duration

e From the output energy and the peak power, we can estimate
the duration of the pulse

V>

—Eini n
Y 2y ™" L _Ty
0 e -
P 1 c 2
pk LEinit 1——(1+ln|:Xpump :I)) 4 14
TRT Xpump
To/T.
6
fo =T 1 - ; Output durati
_ 4 utput duration
1 —Xpump (1 + In [Xpump :I) 3 limited by T,
2
1 —

2 4 6 8 10 Xoump



Example: Q-switched microchip laser

Diode-pumped microchip lasers electro-optically Q switched at
high pulse repetition rates

September 1, 1992 / Vol. 17, No. 17 / OPTICS LETTERS 1201 — : . ' .
J. J. Zayhowski and C. Dill III

532um

DIODE LASER /

e

ELECTRODE
L

c-AXIS T

Nd:YAG || LiTaO5

QUTPUT

PARTIALLY J{ 904 KLm
TRANSMITTING -
HR AT LASING WAVELENGTH PARTIALLY
AR AT PUMP WAVELENGTH TRANSMITTING

Fig. 1. Illustration of an electro-optically @-switched
microchip laser. HR, highly reflecting; AR,
antireflecting.
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Table 1. Characteristics of the Output Pulses
from a 1.064-um, Diode-Pumped, Electro-Optically
Q-Switched Nd:YAG Microchip Laser

Pulse Pulse Time-Averaged Pulse Peak
Rate Width Power Energy Power
(kHz) (ns)® (mW) (ud)? (W)
5 0.27 34 6.80 25,185
10 0.43 50 5.00 11,627
30 0.91 53 1.77 1941
75 2.0 55 0.73 367
150 4.1 57 0.38 93
500 13.3 50 0.10 7.5

cW - 55 - -




More Q-switching regimes

e Slow, active Q-switch
— Opening time is finite, include t-dependent loss during
build-up
e Cavity dumping
— Build-up to saturation, no output, then switch all out
e Passive Q-switch, saturable absorber

— Third equation to keep track of N,

— Gain builds to reach a higher N,;, then SA saturates during
build up

— Pulse energy, duration depend on pumping level
— For CW pump, rep rate also depends on pumping level
— Design: OD of unsaturated loss, beam size in SA



Mode-locking

Q-switched pulse duration is limited by cavity photon lifetime.
Cavity dump: round trip time

For shorter pulses, we need broad spectral bandwidth
— Run CW on many longitudinal modes

— Random phase is just a noisy laser

— Must lock phase of the longitudinal modes

Active mode-locking

— Intracavity device to modulate loss, synced up with the repetition
rate

Passive mode-locking

— Nonlinear effect that leads to lower loss during pulse



Fourier transforms: t-w domain

F(a)):_]i F(t)er™ di = FT{ £(1)}

f(t):i_ F(o)e™ dt = FT™[F (o))

In EM, our signals are complex fields

1/2m factor is lumped into inverse transform

w is our frequency variable, not v. This affects the normalization
constants.

Note signs of exponents: this is tied to our exp(-i w t) convention

Techniques
— Analytic: apply transform IDs and theorems to decompose a transform into its parts
— Analytic in Mathematica: can do some FTs but not always expressed in recognizable way
— Graphical: after identifying components of a transform, sketch the anticipated result
— Numerical: FFT for calculating complicated or realistic cases for modeling/data analysis



FT of a Gaussian pulse

e Starting integral: [e“ dz=r
— True even if z is complex

f(t)=e"" FT{f(1)}=F(w)= j e gti0t gy

e Complete the square in the exponent...



FT of a Gaussian is a Gaussian

e Startingintegral: [e* dz=+r
— True even if z is complex

fH)=e"" FT{f(t)}=F(o)= T e gtiot gy

e Complete the square in the exponent

t? . 1/, 2 1 l 22 1 5 4
__Z_Hwt:_—z(t —ia)tto):——z I—EG)IO +Z(l) l,

tO to tO
1 ' T
:—T(t—iwtg) ——w’t;
22 4 | .
— Change variables: z=t—(t—§wt§j
0

(o o)

0 12112 +iwt _lw2tg _7? —l(Ung
F(a)):je e Vdt=t.e ? Je dz=~mt,e*

—00



Other transform pairs:

FT{rect]=sinc and Dirac delta
° RECt(t/tO) rect(ij =1 for |t| <%O

Ly

F(w)= T rect(t/t,)e"™ dt = J e dt = .i(e”“”o/2 — e‘i“”o/z)

—1y/2 1
=t sin(a)to/Z)_t sinc(wt, /2)
Y w2 ’
 Diracdelta [&(r)dr=1
— Limit: N
6(w)= lim FT {rect(r/1,)}= tlinl[to sinc(wr, /2) |

— At w=0, limit is oo
— w#0, limitis 0 in sense that integral over rapid osc sin( ) is 0
— Normalization:

FT{1} =276 (o) FT'{1}=6(¢)



Time-bandwidth product

e “uncertainty principle” comes from FT relations
FT(e") > 1, e
— Pulse duration: t,
— Spectral width (bandwidth): dw = 2/,
— Time-bandwidth product: t,6w =2
e This relation depends on how widths are defined
— Here we’ve been using 1/e half width in the field
— For FWHM in intensity:  E(r)= Ee 2 I(t) o< pim2e’ /T

T=t,N2In2 Aw=06w~2In2

DO A= 41n2 =277 L

2In2 27

~ (.44

1,00 =2 =




Bandwidth for transform-limited pulses

e The bandwidth in frequency space is independent of
the central frequency =

Av(Hz)

101

1019}
1014 I

1012}

é 1014
5

S 1012
=

A=0.5 10 20um  100um 2

A, . s O

=

6y T 108
=
L

1071 1074 10713 10712

T (s)

10-13 10711 1079
FWHM pulse duration (s)
The shortest pulse is

limited to % of an optical
cycle



Train of Gaussian pulses

e Typical scenario: 1 pulse per round trip

1.0

0.8 Spacing: 6ns
(3ft cavity length)
* Duration: 100ps

0.6

0.4

0.2

> 4 6 8 10 12 1« time(ns)

e What is spectrum of a pulse train?



Spectrum of a pulse pair

e Spectrum = |FT{field in time domain} |2
— Add a pulse to a copy of the pulse with time delay
— Calculate the spectrum

e Spectrum of delayed pulse:

oo

FT{f(t-T)}= ;f(t—T)e”"‘”dt Let t'=t-T

—00

J'f +za)t+T dt (w)ein

— Give a phase shift (shift theorem) FT{E(t—T)}zE(a))ei“’T
e Spectrum of two pulses:

‘E( )+E(o) e[ iwT

Jefo]

‘E

4c052(a)T/2)



Two pulse spectrum

e Spectral interference of two pulses is like the double-
slit interference

‘E((D)+E(a))ew T 4‘E(a)) : cosz(a)T/Z)

-30-20-10 0 10 20 30 -30-20-100 1020 30 -3G-20-10 0 10 20 30
(0—600 60—(00 0)—600
Increasing delay =»



Multipulse spectrum

e As more pulses are added, fringes turn mto dlscrete

peaks ”

|

I

ol
ol

MMM

_ -20 -

ol



Comb function

e Define the comb function

e R

4T -3T-2T =T O T 2T 3T 4T
e A pulse train can be written as a convolution

flt)®s(t-T)= Jf(t £')6(t'-T)dt'= f(t T)

>

A
me s U




Array theorem: FT of comb( )

e Basic FT is straightforward:

oo

f(£)=comb(t/T)= ¥ 8(c-nT)  Flw)= Y Fr{s(c-nT)}=Y e

N=—oo N=—o0 N=—oo

e This is actually a comb function also

e Since comb( ) is a periodic function (period T), we can
write as a Fourier series: f(t)=Y c e/

1 T/2 | 1 T /2 | i ’ i
Cn — J f(t)e—IZEnt/T — J 5(t)e—127rnt/T T T T T T
r —T/2 r —T/2 < § | § >
Integrate over one period, but we can extend integral to oo —T;/2 1;'/2
1 1
¢, = comb(t /T) = Y et

N=—oo



Array theorem (cont)

e Now take FT:

f(t): comb(t /T) % i e/t
1=

e So FT{comb} =comb
— Frequency spacing Aw=2mr/T or Av=1/T



Spectrum of a pulse train
e Gain envelope on longitudinal mode spectrum

-y 02
et/ ®comb(t /T) FT{e . ®comb(t /T)}

—t 202 /4
—g 0/ comb(a) /Aa))
‘ T is pulse spacing = round trip time in laser resonator

Av=1/T = spacing of peaks in frequency
= longitudinal mode spectrum




Spectrum of a pulse train

e Reverse reasoning: multiply gain envelope on longitudinal
mode spectrum

2 2
— w—
exp _(wA w20) Comb(a)/ﬁa)) exp[—( szo) ]-comb(a)/&o)
_ @ 1 Longitudinal mode spectrum
Gain spectrum ) l i I "
_ > | Pulse train output
FT{exp[—(wA sz> ]-comb(a)/&o) X
0)]

_ (w_wo)zzl} 1
= FT <exp| — - ® —comb(t /(27 / b))
{ p[ Aw o0 JUUUUUUL




Mode-locking: time-domain

e Active mode-locker: periodically modulate losses at RT time

froa(t)=1—acos’ (27t /Ty, )

Ot
™/ \/ \ ZOSNW Modulator acts as a “window” for a pulse

; to be transmitted
0.6 -

04|

0216

—15 - ;16 - ‘—5“ - ‘5 - “10“ “15

e Pulse duration is connected to modulation depth

e Picture doesn’t explain how pulse can be much shorter than
round trip time



Mode locking: frequency domain

e Random phases produces noisy output
e Modes must be “locked” in phase to produce pulses

e Frequency domain representation of modulator:
fmod (t) =1- ClCOS2 (a)M t)
FT{ foou(t)} = FT {1} aFT{cos’ (@, 1)}

cos’ (mt /Ty ) = i(ei“’Mt +e_”“’f‘”)2 = i(2+e"2“’M’ +e‘i2“’Mt)

A

Adjust 2w,, to match longitudinal

mode spacing.
Wy-2W), Wot2Wy,

T T Coherent seeding cascades to all
modes with gain.




Active mode-locking

Two mechanisms affect the evolution of the pulse
— Time-dependent transmission narrows the pulse in time
— w-dependent gain narrows the spectrum (longer in time)

Look for a pulse shape that repeats itself on each round trip
(like spatial mode does)

With small change to pulse for each individual element in cavity,
we can treat them as distributed

— Leads to a master differential equation for pulse

— Solution for the pulse shape is an eigenfunction of the equation

Assume T,,>>Tp

Assume laser is operating steady-state CW: one pulse per RT,
e.g. 100 GHz repetition rate for a 5’ long resonator.



Propagation equation: spectral gain

e Pulse sees saturated gain based on average intensity (/)

hv
gO — g Isat — : g = GPkNO
1+<I>/Isat kaT21
Steady state small-sig gain
_ _ _ coeff. Ng = Ny,
e Gain varies with frequency:
8
8o (@) = - 2 Lorentzian profile
2(0-w,)
1+
Aw,

— Expand this near the central frequency

2
go(w)zgo[1_4(wA_w§) } G(w):egO(w)
)

0




Gain effect in frequency domain

e We want to develop propagation equation for the envelope of
the pulse in the time domain.

E()= A()e
%A((o—a) ) FT _’w‘)t J.A o-oo)t 1¢ Note use of shift thm

e |n spectral domain, effect of gain is multiplicative:

A(o-0,)=Al0-0,)C(0-0,)=Al0-a,)exp 80[14((‘;—@6:;’)2]

e For small gain,

A’(a)—a)o)z[1+go(1—4(w_w§)2]]A(a)—a)o)

Aw,




Gain effect in time domain
e Useinverse FT to calculate shape of amplified pulse
A'(t)=FT ' {A(0-w,)}

e Make use of a FT property:

d" . n Take FT definition,
FT {dt” A(I)} = [—l(a) —, )] A(a) — wo) then derivative.
_ , .
, 2 | & 2
A'(t)=|1+g,| 1+ o | 27 A(1)=T,A(r) Alt)
0

' A(t)

v, +d2A(t)/dt?
This operation in the time domain has the same \

effect as in the frequency domain.

N\,

N\ sayae




Effect of modulator in time-domain

e Modulator loss shortens pulse in time domain
— Double-pass transmission

T (t) _ e—ym(l—cos(a)mt))

m

— Assume low loss

T (t)~1-y, (1 — cos(a)mt))

— Expand around pulse peak (t=0)

A ’}/ 2
T =1-—"w,t
m 2 ( m )
e Also write operator for passive loss:

j:'l:e_yzl—’y



Propagation equation for mode-locked pulse

Effect of one round-trip on cavity is

A A A

A'(t)=TTT,A(r)
Stable solution is an eigenfunction of this equation

Differential form:

A'(t)=

Same form as Schrodinger egn for SHO

o

2

2d2

Aw,

|

dt*

l

oy Tu
5

w,°t’

A(1)



Stable mode-locked pulse

e Solution follows Hermite-Gaussian form:

D122 1/4 12
A(t)=H,(o,t)e """ o, :( Vo j (wmAwoj

28, 2
— Only n =0is actually stable

e FWHM pulse duration:

r = 2In2 _ zm(ﬁ]m[ 5 jl/z : (2\/521n2)1/2 (&)1/4( ' jl/z

p
o, Y., o, A, v Ay,

e Nd:YAG example: ~0.45 ~1
Av,=120GHz v, =76MHz — 7, =150ps

e Active mode-locking is limited by relatively slow action of the
modulator (small v,)

— Passive mode locking can produce much shorter pulses!



Passive mode locking

e Introduce a nonlinear effect so that there is lower loss
with a pulse than without

— If NL response is fast, the modulation can lead to much
shorter pulses than with active mode-locking

e Kerr-lens mode-locking

— Non-linear refractive index: higher refractive index during
pulse

— High refractive index in center of beam: positive lens
— NL lens changes stability of cavity
— Align cavity to be stable, lower loss with pulse than CW



