Assignment 3 PHGN361

Homework due Jan. 31

- 1. Chapter 1 problems 47, 55.
- 2. Chapter 2 problems 33, 35, 39, 43, 51
- 3. Chapter 3 problems 2, 3, 4.
- 4. Using Mathematica (Load the graphics package using the command *Needs*["*Graphics*'*PlotField*'"]), obtain the following information.
 - (a) Plot the vector field $x Exp[-(x^2 + y^2)]\hat{i} + 0\hat{j}$ over the interval $\{x, -2, 2\}$ and $\{y, -2, 2\}$.
 - (b) Calculate the divergence of this vector field.
 - (c) Obtain a contour plot of this divergence with 20 contours and $PlotPoints \rightarrow 50$ over the interval
 - $\{x, -2, 2\}$ and $\{y, -2, 2\}$. Interpret parts (a), (b), and (c) in terms of Gauss's law $(\vec{\nabla} \cdot \vec{E} = \rho/\epsilon)$.

(d) Consider the two vector fields $\vec{E}_1 = \{y, -x\}/\sqrt{x^2 + y^2}$ and $\vec{E}_2 = \{x, y\}/\sqrt{x^2 + y^2}$. Plot these vector fields over the interval $\{x, -2, 2\}$ and $\{y, -2, 2\}$.

(e) Calculate the curl and divergence of both \vec{E}_1 and \vec{E}_2 .

(f) Consider the vector field $E_1 = x\hat{i} + y\hat{j}$ and the path defined by $\vec{r} = \sin(2s)\hat{i} + \cos(s)\hat{j}$, where s goes from 0 to $\pi/2$. Plot the vector field and the path. Find $\int \vec{E_1} \cdot d\vec{l}$ for this path. Do the integral numerically.