
Reading assignment. Schroeder, section 3.2.

0.1 Temperature

0.1.1 Review of our current picture

Now that we’ve seen a real example of entropy in action, it would be wise
to review our current worldview, which is so closely centered on entropy.

• Equilibrium of macroscopic systems is a statistical effect—the most
probable macrostate is the one we see, simply because it is so over-
whelmingly more probable than others that differ from it in any sub-
stantial way. (How many times have I said this?)

• To discover the value of some macroscopic parameter that charac-
terizes the macrostates of a pair of systems as they come to equilib-
rium, find the value of the parameter that yields the most probable
macrostate.

• Macrostate probabilities are determined by summing the probabili-
ties of the corresponding microstates. Assuming all microstates are
equally probable, only the numbers of microstates, the multiplicities
of the macrostates, are needed in order to characterize the relative
probabilities of macrostates. This gives Ω(parameter).

• Entropy is defined in terms of the macrostate multiplicity:

S = k lnΩ . (1)

• Maximization of macrostate probability in equilibrium implies maxi-
mization of entropy in equilibrium:

max
parameter

Ω(parameter)⇒ max
parameter

S(parameter) = Sequilibrium . (2)

This is the second law of thermodynamics.

• Equilibrium values of macroscopic variables follow from the equilib-
rium value of the entropy. So far, we’ve found(

∂S(U, V,N)
∂U

)
V,N

=
1
T

(3)

for the ideal gas.
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0.1.2 Temperature—the definition

We’ll just take the expression we found for the ideal gas as our definition
of temperature: (

∂S(U, . . . )
∂U

)
...

=
1
T

. (4)

Really, we should call this derivative the coldness of the system, since it
behaves inversely to temperature.

It’s worth noting the dimensional implications of this equation: it im-
plies that the product TS has dimensions of energy. But recall that for the
ideal gas, the energy is proportional to kT , so this dimensional analysis ex-
plains why we multiplied the logarithm of the multiplicity by Boltzmann’s
constant when we defined entropy: it endows the temperature with the
correct conventional units.

0.1.3 A graphical view of temperature

The definition of temperature expresses the coldness as the slope of the
S(U) curve when other macroscopic variables (e.g., V and N) are held
fixed. Since this is the inverse temperature, this suggests that the slope
becomes large as T → 0 and decreases monotonically to zero as T → ∞.
So the entropy of a single system generally looks like this:

FIGURE: S(U) graph for single system.

This isn’t guaranteed, of course, since U may not be proportional to T ,
but this is the kind of general trend we expect for systems for which there
is no upper bound to the energy. There are some oddball systems, and one
of our toy systems, the two-state paramagnet is one, for which there is a
maximum energy. At least in the case of the paramagnet, it’s possible to
employ devious experimental trickery to increase the energy beyond half
the maximum, which corresponds to infinite temperature. In that region,
the S(U) curve is a decreasing function of U , so the temperature is negative.
Still other systems can actually have increasing slope with energy. We’ll
concentrate on more normal systems for now.

For a pair of systems in thermal contact, it is the total entropy, the sum
of the entropies of the subsystems, that is maximized in equilibrium, so that
must actually have a maximum within the accessible range of values of the
parameter characterizing the division of energy between them. Schroeder
has a very instructive figure that displays both the total entropy and the
subsystem entropies for a pair of relatively small Einstein crystals:

FIGURE: Schroeder’s 3.1 (p. 87) or similar

Recall that we showed the equilibrium condition for thermal contact to
be: (

∂S1

∂U1

)
V1,N1

=
(

∂S2

∂U2

)
V2,N2

, (5)
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where U1, the energy of the first subsystem, is taken as the parameter. This
says the slopes of the two Si(Ui) curves must be equal in equilibrium. Since
both curves have monotonically decreasing slopes, there is only one point
where they can be equal, which is comforting since it means the equilibrium
state has a unique value of the parameter. The point where those slopes are
equal coincides with the maximum of the total entropy, as our derivation
of the equilibrium condition showed.

There’s another important point to be gleaned from Schroeder’s wonder-
ful figure. Since the slopes of the Si(Ui) curves decrease monotonically, for
any given value of UA, or qA, the subsystem with the larger slope (greater
coldness) will gain energy at the expense of the other system, as the total
entropy approaches its maximum. This means that energy flows from the
hotter system to the colder one, until their temperatures (or coldnesses)
become equal at equilibrium.

Now, Schroeder’s figure represents two nonidentical subsystems, so the
two subsystem entropy curves must be drawn in opposite directions in order
to have the equality of the slopes occur at the same point on the abscissa.
Thus, without looking at the quantitative details it’s a little difficult to
see graphically why the slopes of the single-system entropies become equal
exactly at the point where the total entropy is maximized. We’ve shown
that algebraically, but we can also see it graphically. To do so in a simplified
case, consider two identical systems to be placed in thermal contact. Since
they are identical, their S(U) curves are identical and can be plotted on the
same graph. We’ll suppose they initially have different energies, so their
initial states are represented by different points on the S(U) graph:

FIGURE: Single-system S(U) graph for both systems, with initial points

The total energy Utot is twice the average of the energies of the two systems,
and remains so after thermal contact is established. The total entropy Stot

is twice the average of the entropies.
After thermal contact is established, energy flows from the hotter system

to the colder one, and the points representing the states of the systems move
along the S(U) curve toward the midpoint, where their energies will each
equal the average of their initial energies. As they do so, the average of
their entropies, half Stot increases, reaching a maximum (for the fixed Utot)
at equilibrium, when the two points coalesce and their slopes become equal.

The property of these S(U) curves that made this graphical argument
work is their convexity, as seen from above. That means the curve is ev-
erywhere above the midpoint of any line connecting distinct points on the
curve, and it is that property that enabled us to visualize clearly the in-
crease in total entropy as the systems approached thermal equilibrium.
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