

$$
\begin{gathered}
\operatorname{Emf}_{m}(\text { voltage })=-\frac{d \Phi_{m}}{d t} \Rightarrow\left|\int \vec{E} \cdot d \vec{e}\right| \\
{\underset{m}{m}}^{\Phi^{\prime}} \mid \int \bar{B} \cdot d \vec{c}=B h x
\end{gathered}
$$

$$
\frac{d+}{d t}=B h v
$$

Ex: rower

Ex:

$$
\begin{aligned}
& \varepsilon_{u f}=\frac{d t_{m}}{d t} \\
& S \bar{E} \cdot d \vec{l}=\Sigma_{m f}=-\frac{d \Phi_{m}}{e t}
\end{aligned}
$$

cunt be explained by using $q \overrightarrow{0} \times \vec{B}$

Sketch the emf in the loop shown as a bar magnetic traverses the loop.

Emt

Φ

Sula

\odot
©

$$
\vec{B}(t)
$$

$$
\begin{aligned}
& \varepsilon_{m} f=-\frac{d \Phi_{m}}{d t} \\
& \left.\oint^{\prime \prime} \vec{E} \cdot \overrightarrow{d l}=-\frac{d \Phi}{d t}=-\frac{d}{d t} \right\rvert\, \vec{B} \cdot d \vec{a} \\
& E \sum \nmid r=\frac{d B}{2} t r^{2} \\
& E(t)=\frac{d B}{d t} \frac{r}{2}
\end{aligned}
$$

(1)

$$
\begin{aligned}
& d F=\bar{J} \times \bar{B} d \uparrow \\
& = \\
& r^{2} \sin \theta d c d r
\end{aligned}
$$

$$
\int \hat{r}
$$

(4) gave \vec{A} find \vec{J}

$$
\begin{aligned}
& B=\vec{\nabla} \times \vec{A} \quad \stackrel{\nabla}{A} \times \overline{\vec{J}}=\mu_{0} \bar{J} \\
& \underbrace{\nabla^{2} \bar{A}}_{\text {vetor loplanion }}=-\mu_{0} \vec{J}
\end{aligned}
$$

