Once you construct potentials such that $\vec{B}=\nabla \times \vec{A}$ and
$\vec{E}=-\nabla V-\frac{\partial \vec{A}}{\partial t}$ for a particular physical situation, including boundary conditions, those potentials are unique.
A) True.
B) False.

Consider the static point-charge potentials $V=\frac{k q}{r}$ and $A=0$. Are these in the Coulomb gauge, the Lorentz gauge, both, or neither?
7
A) Only Coulomb
B) Only Lorentz
C) Both
*3
D) Neither

Cunlomb: $\nabla \cdot \bar{A}$

Consider the equivalent static point-charge potentials $V=0$ and $\vec{A}=\frac{-k q t \hat{r}}{r^{2}}$. Are these in the Coulomb gauge, the Lorentz gauge, both, or neither?

3	
3 A) Only Coulomb B) Only Lorentz C) Both D) Neither 5 39 $\bar{B}=\nabla \times \bar{A}$ $E=-\nabla V-\partial \bar{A} / d t$	

Can the actual values (not the gradients, curls, etc) of the potentials \vec{A} and V ever affect a physical outcome?
A) Yes
B) No
C) Both
D) Neither

If $\oint \vec{A} \cdot \overrightarrow{d l}$ is just another way of writing magnetic flux, it ought not depend on gauge. Show that if you do a gauge transformation on A, you don't change $\oint \vec{A} \cdot \overrightarrow{d l}$

Take the divergence of both sides of Faraday's law:

$$
\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

What do you get?
A. $0=0$
B. A partial differential equation (perhaps a wave equation of some sort ?) for \mathbf{B}
C. Gauss' law
D. It's something, but I don't know what it is.

You heard about/read about two different gauges. In the Coulomb gauge, $\nabla \cdot \vec{A}=0$. In the Lorentz gauge, $\nabla \cdot \vec{A}=-\mu_{0} \varepsilon_{0} \frac{\partial V}{\partial t}$. That's all well and good in theory, but when you're solving actual problem, how does one actually force one's \vec{A} and/or V to be such that one or the other gauge condition is satisfied?

Discuss this and click in when you're done.

Quantum-scale conducting channel with two anti-dot obstruction

*From Johnson, Kohl, Retzlaff, 2002

