Terry Bridgman

Theorem 1 (First Fundamental Theorem of Calculus). Let f be a continuous real-valued function defined on a closed interval $[a, b]$. Let F be the function defined, for all $x \in[a, b]$, by

$$
F(x)=\int_{a}^{x} f(t) d t .
$$

Then, F is differentiable on $[a, b]$, and for every $x \in[a, b]$,

$$
F^{\prime}(x)=f(x) .
$$

The operation $\int_{a}^{x} f(t) d t$ is a definite integral with variable upper limit, and its result $F(x)$ is one of the infinitely many antiderivatives of f.

Proof. Let there be two numbers x_{1} and $x_{1}+\Delta x$ in $[a, b]$. So we have

$$
F\left(x_{1}\right)=\int_{a}^{x_{1}} f(t) d t
$$

and

$$
F\left(x_{1}+\Delta x\right)=\int_{a}^{x_{1}+\Delta x} f(t) d t .
$$

Subtracting the two equations gives

$$
\begin{equation*}
F\left(x_{1}+\Delta x\right)-F\left(x_{1}\right)=\int_{a}^{x_{1}+\Delta x} f(t) d t-\int_{a}^{x_{1}} f(t) d t . \tag{1}
\end{equation*}
$$

It can be shown that

$$
\int_{a}^{x_{1}} f(t) d t+\int_{x_{1}}^{x_{1}+\Delta x} f(t) d t=\int_{a}^{x_{1}+\Delta x} f(t) d t
$$

The sum of the areas of two adjacent regions is equal to the area of both regions combined.

Manipulating this equation gives

$$
\int_{a}^{x_{1}+\Delta x} f(t) d t-\int_{a}^{x_{1}} f(t) d t=\int_{x_{1}}^{x_{1}+\Delta x} f(t) d t .
$$

Substituting the above into (1) results in

$$
\begin{equation*}
F\left(x_{1}+\Delta x\right)-F\left(x_{1}\right)=\int_{x_{1}}^{x_{1}+\Delta x} f(t) d t . \tag{2}
\end{equation*}
$$

According to the Intermediate Value Theorem ${ }^{1}$ for integration, there exists a $c \in\left[x_{1}, x_{1}+\Delta x\right]$ such that

$$
\int_{x_{1}}^{x_{1}+\Delta x} f(t) d t=f(c) \Delta x
$$

Substituting the above into (2) we get

$$
F\left(x_{1}+\Delta x\right)-F\left(x_{1}\right)=f(c) \Delta x
$$

Dividing both sides by Δx gives

$$
\frac{F\left(x_{1}+\Delta x\right)-F\left(x_{1}\right)}{\Delta x}=f(c)
$$

Notice that the expression on the left side of the equation is Newton's difference

$$
\text { quotient }{ }^{2} \text { for } F \text { at } x_{1}
$$

Take the limit as $\Delta x \rightarrow 0$ on both sides of the equation.

$$
\lim _{\Delta x \rightarrow 0} \frac{F\left(x_{1}+\Delta x\right)-F\left(x_{1}\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0} f(c)
$$

The expression on the left side of the equation is the definition of the derivative of F at x_{1}.

$$
\begin{equation*}
F^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} f(c) \tag{3}
\end{equation*}
$$

To find the other limit, we will use the Squeeze Theorem ${ }^{3}$. The number c is in the interval $\left[x_{1}, x_{1}+\Delta x\right]$, so $x_{1} \leq c \leq x_{1}+\Delta x$.

Also, $\lim _{\Delta x \rightarrow 0} x_{1}=x_{1}$ and $\lim _{\Delta x \rightarrow 0} x_{1}+\Delta x=x_{1}$.
Therefore, according to the squeeze theorem,

$$
\lim _{\Delta x \rightarrow 0} c=x_{1}
$$

Substituting into (3), we get

$$
F^{\prime}\left(x_{1}\right)=\lim _{c \rightarrow x_{1}} f(c)
$$

The function f is continuous at c, so the limit can be taken inside the function. Therefore, we get

$$
F^{\prime}\left(x_{1}\right)=f\left(x_{1}\right)
$$

which completes the proof.

[^0]
[^0]: ${ }^{1}$ Intermediate Value Theorem states if $y=f(x)$ is continuous on $[a, b]$, and N is a number between $f(a)$ and $f(b)$, then there is a $c \in[a, b]$ such that $f(c)=N$
 ${ }^{2}$ The function difference divided by the point difference is known as the difference quotient and given by $\frac{\Delta F(P)}{\Delta P}=\frac{F(P+\Delta P)-F(P)}{\Delta P}$
 ${ }^{3}$ The Squeeze Theorem asserts that if two functions approach the same limit at a point, and if a third function is "squeezed" between those functions, then the third function also approaches that limit at that point.

