
Class 7 

•  EM wave review 
•  Calculation of intensity 
•  Monochromatic Michelson interferometer 
•  Quasi-monochromatic Michelson 
•  Autocorrelation theorem 
•  Fourier Transform interferometer 



Solutions of scalar wave equation 

•  2nd order PDE: 
–  Assume separable solution 
–  2 solutions for f(z), g(t) 
–  Full solution is a linear combination of both solutions 

–  Equivalent representation: 
 
   forward propagating + backward propagating waves  

•  Complex (phasor) representation:   

  ψ (z,t) = f z( )g t( ) = A1 coskz + A2 sin kz( ) B1 cosωt + B2 sinωt( )

  
ψ (z,t) = Re aei kz−ωt+φ( )⎡

⎣
⎤
⎦

  ψ (z,t) = A1 cos kz +ωt +φ1( ) + A2 cos kz −ωt +φ2( )

  
∂2

∂z2ψ (z,t) − 1
c2

∂2

∂t2ψ (z,t) = 0

  ψ (z,t) = f z( )g t( )

  
ψ (z,t) = Re Aei kz−ωt( )⎡

⎣
⎤
⎦or 

Here A is complex, includes phase 



Maxwell's Equations to wave eqn 
•  The induced polarization, P,  contains the effect of the medium:  

    


∇⋅E = 0          


∇×E = − ∂B

∂t

∇⋅B = 0          


∇×B = 1

c2

∂E
∂t

+ µ0

∂P
∂t

Take the curl:"

�Inhomogeneous Wave Equation�"

    


∇×


∇×E( ) = − ∂

∂t

∇×B = − ∂

∂t
1
c2

∂E
∂t

+ µ0

∂P
∂t

⎛
⎝⎜

⎞
⎠⎟

Use the vector ID:"

 A × B ×C( ) = B A ⋅C( )−C A ⋅B( )

   

∇×


∇×E( ) = ∇ ∇⋅E( )− ∇⋅


∇( )E = −


∇2E

    


∇2E− 1

c2

∂2E
∂t2 = µ0

∂2 P
∂t2



Maxwell's Equations in a Medium 
•  The induced polarization, P,  contains the effect of the medium:  

•  Sinusoidal waves of all frequencies are solutions to the wave equation 
•  The polarization (P) can be thought of as the driving term for the 
solution to this equation, so the polarization determines which 
frequencies will occur. 
•  For linear response, P will oscillate at the same frequency as the input. 

•  In nonlinear optics, the induced polarization is more complicated: 

•  The extra nonlinear terms can lead to new frequencies.    

    


∇2E− 1

c2

∂2E
∂t2 = µ0

∂2 P
∂t2

  P E( ) = ε0χE

  
P E( ) = ε0 χ (1)E+ χ (2)E2 + χ (3)E3 + ...( )



Solving the wave equation: 
            linear induced polarization 
For low irradiances, the polarization is proportional to the incident field:"

   P E( ) = ε0χE, D = ε0E+ P = ε0 1+ χ( )E = εE = n2E

 "

In this simple (and most common) case, the wave equation becomes:"

The electric field is a vector 
function in 3D, so this is 
actually 3 equations:"

Using:"   ε0µ0 = 1/ c2

    


∇2E− 1

c2

∂2E
∂t2 = 1

c2 χ
∂2E
∂t2     

→

∇2E− n2

c2

∂2E
∂t2 = 0

    


∇2Ex r,t( )− n2

c2

∂2

∂t2 Ex r,t( ) = 0

    


∇2Ey r,t( )− n2

c2

∂2

∂t2 Ey r,t( ) = 0

    


∇2Ez r,t( )− n2

c2

∂2

∂t2 Ez r,t( ) = 0

  ε0 1+ χ( ) = ε = n2



Plane wave solutions for the wave equation 

This is a linearly polarized wave. "
For a plane wave E is perpendicular to k, so E can also point in y-direction"

Where"

   
→ ∂2E

∂z2 − n2

c2

∂2E
∂t2 = 0

If we assume the solution has no dependence on x or y:"

  ω = k c, k = 2πn / λ, vph = c / n

    


∇2E z,t( ) = ∂2

∂x2 E z,t( ) + ∂2

∂y2 E z,t( ) + ∂2

∂z2 E z,t( ) = ∂2

∂z2 E z,t( )

The solutions are oscillating functions, for example"

E z,t( ) = x̂Ex cos kzz −ωt( )



Complex notation for EM waves 

•  Write cosine in terms of exponential 

–  Note E-field is a real quantity.  
•  It is convenient to work with just one component 

–  Method 1: 

–  Method 2:  

•  In nonlinear optics, we have to explicitly include 
conjugate term. Leads to extra factor of ½.  

 

E z,t( ) = x̂Ex cos kz −ωt +φ( ) = x̂Ex
1
2
ei kz−ωt+φ( ) + e− i kz−ωt+φ( )( )

E z,t( ) = x̂Re Aei kz−ωt( )⎡⎣ ⎤⎦

A = 1
2 Exe

iφE z,t( ) = x̂ Aei kz−ωt( ) + c.c.( )

A = Exe
iφ



Wave energy and intensity 

•  Both E and H fields have a corresponding 
energy density (J/m3) 
–  For static fields (e.g. in capacitors) the energy 

density can be calculated through the work 
done to set up the field 

 
–  Some work is required to polarize the medium 
–  Energy is contained in both fields, but H field 

can be calculated from E field 

ρ = 1
2 εE

2 + 1
2 µH

2



H field from E field 

•  H field for a propagating wave is in phase with E-
field 

•  Amplitudes are not independent 

   

H = ŷH0 cos kz z −ωt( )
= ŷ

kz

ωµ0

E0 cos kz z −ωt( )

  
H0 =

kz

ωµ0

E0
 
kz = nω

c   
c2 = 1

µ0ε0

→ 1
µ0c

= ε0c

  
H0 =

n
cµ0

E0 = nε0cE0



Energy density in an EM wave 

•  Back to energy density, non-magnetic 

ρ = 1
2 εE

2 + 1
2 µ0H

2

ε = ε0n
2

  µ0ε0c
2 = 1

  H = nε0cE

ρ = 1
2 ε0n

2E2 + 1
2 µ0n

2ε0
2c2E2

ρ = ε0n
2E2 = ε0n

2E2 cos2 kzz −ωt( )
Equal energy in both components of wave 



Cycle-averaged energy density 

•  Optical oscillations are faster than detectors 
•  Average over one cycle: 

–  Graphically, we can see this should = ½  

–  Regardless of position z 

ρ = ε0n
2E0

2 1
T

cos2 kzz −ωt( )dt
0

T

∫
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2



Intensity and the Poynting vector 

•  Intensity is an energy flux (J/s/cm2) 
•  In EM the Poynting vector give energy flux 

–  For our plane wave, 

–   S is along k 
•  Time average: 
•  Intensity is the magnitude of S  

S = E×H

S = E×H = E0 cos kzz −ωt( )nε0cE0 cos kzz −ωt( ) x̂ × ŷ
S = nε0cE0

2 cos2 kzz −ωt( ) ẑ

S = 1
2 nε0cE0

2ẑ

I = 1
2
nε0cE0

2 = c
n
ρ =Vphase ⋅ ρ F = I

hν
Photon flux: 



Calculating intensity with complex 
wave representation 

•  Using the convention that we work with the 
complex form, with the field being the real part 

–  Or write 

–  take the real part when we want the field  
•  Time-averaged intensity  
 

–  Notice this is the sum of intensities for the different 
polarization components 

E z,t( ) = x̂Re Aei kz−ωt( )⎡⎣ ⎤⎦ A = Exe
iφ

I = 1
2
nε0cE0 ⋅E0

*

E z,t( ) =E0ei kz−ωt( ) E0 complex, vector 



Example: Michelson interferometer 

•  calculate output intensity 
–  50-50 beamsplitter for power 
–  Transmitted field:  

•  b/s 
•  Return 
•  Detector 

–  Reflected field at detector 

–  Total field at detector 

E0 

1
2 x̂E0e

− iω t

L1 

L2 

L3 
1
2 x̂E0e

i 2kL1−ω t( )

− 1
2 x̂E0e

i k 2L1+L3( )−ω t⎡⎣ ⎤⎦

1
2 x̂E0e

i k 2L2+L3( )−ω t⎡⎣ ⎤⎦

Internal 
reflected π 
phase shift 

Eout = − 1
2 x̂E0e

i k 2L1+L3( )−ω t⎡⎣ ⎤⎦ + 1
2 x̂E0e

i k 2L2+L3( )−ω t⎡⎣ ⎤⎦

= 1
2 x̂E0e

i k L3−ω t[ ] −ei k 2L1 + ei k 2L2( )



Michelson: output intensity 

•  Calculate intensity of output 

I = 1
2
nε0cEout ⋅Eout

* = 1
2
nε0c E1

2 + E2
2 +E1 ⋅E2

* +E2 ⋅E1
*( )

Eout = 1
2 x̂E0e

i k L3−ω t[ ] −ei k 2L1 + ei k 2L2( )
I = 1

2
nε0c 1

2 x̂E0e
i k L3−ω t[ ] −ei k 2L1 + ei k 2L2( )( ) ⋅ 1

2 x̂E0e
i k L3−ω t[ ] −ei k 2L1 + ei k 2L2( )( )*

I = 1
8
nε0c E0

2 −ei k 2L1 + ei k 2L2( ) ⋅ −e− i k 2L1 + e− i k 2L2( )
I0 =

1
2
nε0c E0

2
In terms of input intensity 

Iout =
1
4
I0 2 − e

i k 2 L1−L2( ) − e− i k 2 L1−L2( )( )
= 1
2
I0 1− cos k 2 L1 − L2( )⎡⎣ ⎤⎦( )

In terms of time delay 

2k L1 − L2( ) =ω 2 L1 − L2( )
c

=ωτ



Michelson: time-dependent fields 

•  Now consider the case where the field has time 
dependence 

–  This implicitly is a time average over the fast timescale 
of the carrier 

•  Now average over a much longer time 

Ein t( ) = x̂E0 (t)e− iω0 t → Eout t( ) = 1
2 Ein t( )−Ein t −τ( )( )

I t( ) = 1
2
nε0c Ein t( ) 2 + Ein t −τ( ) 2 +Ein t( ) ⋅Ein t −τ( )* +Ein t −τ( ) ⋅Ein t( )*( )

I t( ) = I t( )dt
−∞

∞

∫ = 2I0 + E0 t( )E0 t −τ( )* dt
−∞

∞

∫ + c.c.

This part is the field autocorrelation EAC τ( ) = E0 t( )E0* t +τ( )dt
−∞

∞

∫
EAC is an even function of τ, so let τ = -τ 



Autocorrelation (Wiener-Khinchin) theorem 

•  Connect the autocorrelation to the spectrum 

fAC τ( ) = f t( ) f * t +τ( )dt∫

FTτ f t( ) f * t +τ( )dt∫{ } = f t( ) f * t +τ( )dt eiωτ dτ∫∫

autocorrelation 

= f t( )dt f * t +τ( )eiωτ dτ∫∫ = f t( )dt f t +τ( )e− iωτ dτ∫⎡⎣ ⎤
⎦∫
*

Let ′t = t +τ d ′t = dτ But flip limits 

FTτ fAC t( ){ } = f t( )dt f ′t( )e− iω ′t −t( ) d ′t∫⎡⎣ ⎤
⎦∫
*
= f t( )dt F −ω( )⎡⎣ ⎤⎦∫

*
e− iωt

= F* −ω( ) f t( )e− iωt dt∫ = F* −ω( )F −ω( )

FTτ fAC t( ){ } = F ω( ) 2If f(t) is real, then F(ω) is even, and  



Fourier transform spectrometer 

•  Measure interference, subtract DC, FT to get 
spectrum 
–  Single detector, better signal/noise 
–  Often used in IR (FTIR) 

http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/
Vibrational_Spectroscopy/Infrared_Spectroscopy/
How_an_FTIR_Spectrometer_Operates 



Coherence time 

•  Note that for large time 
delay, time averaged 
signal is constant (sum of 
two intensities) 

•  Beyond “coherence time” 
no interference 

•  Coherence time is inverse 
of spectral bandwidth 

Tc ≡ 1/ Δν


