Class 7

EM wave review

Calculation of intensity

Monochromatic Michelson interferometer
Quasi-monochromatic Michelson
Autocorrelation theorem

Fourier Transform interferometer




Solutions of scalar wave equation

0’ 1 o°
o 2dorder PDE: ——Sv(z,t)—— =5v(z1)=0
0z c” ot

— Assume separable solution
_ 2 solutions for f(z), g(t) v(zn=7(2)g(t)
— Full solution is a linear combination of both solutions
V(z,t)= f(z)g(t) = (Al coskz+ A, sinkz)(B1 coswt+ B, sina)t)
— Equivalent representation:
v(z,t)= 4, cos(kz+ a)t+¢1)+ A cos(kz— a)t+¢2)

forward propagating + backward propagating waves

« Complex (phasor) representation:
V(z,t)= Re[aei(kz—wt+¢):| or w(z,t)= Re|:Aei(kz—a)t):|

Here A is complex, includes phase




Maxwell's Equations to wave egn

 The induced polarization, P, contains the effect of the medium:

V-E=0 VxE——a—B
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Take the curl:
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Use the vector ID:

AX(BxC)=B(A-C)-C(A-B)
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“Inhomogeneous Wave Equation”




Maxwell’'s Equations in a Medium

 The induced polarization, P, contains the effect of the medium:

= 1 O°E R
VE-——=
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 Sinusoidal waves of all frequencies are solutions to the wave equation

* The polarization (P) can be thought of as the driving term for the
solution to this equation, so the polarization determines which
frequencies will occur.

* For linear response, P will oscillate at the same frequency as the input.
P(E)=¢,E

* In nonlinear optics, the induced polarization is more complicated:
P(E)=¢,(x"E+x 7B+ xF +_.)

» The extra nonlinear terms can lead to new frequencies.




Solving the wave equation:
linear induced polarization

For low irradiances, the polarization is proportional to the incident field:
P(E)=¢yE, D=¢E+P=¢ (1+y)E=¢E=nE

In this simple (and most common) case, the wave equation becomes:

_ 10°E 1 0°E _ n* 0°E
V’E - = —VE-——=0
¢ ot czx ot’ ¢ ot
Using: EO,LLOZI/C2 80(1-1-)():8:112
2 2
. 0
VzEx (l', )—n—zyEx (l',t) =0
The electric field is a vector ¢ , ;2
function in 3D, so this is N n _
VZE (r,t)— —2—2Ey (r,t) =0

actually 3 equations: 7 c” ot




Plane wave solutions for the wave equation

If we assume the solution has no dependence on x or y:

VB ()= L E(e) L B () LB () = LB ()

X dy 0z 0z

JOE ndE
"9z2 & or

The solutions are oscillating functions, for example
E(z,t)=XE, cos(kz—ot)
Where w=kc, k=2nn/A, oy = c/n

This is a linearly polarized wave.
For a plane wave E is perpendicular to k, so E can also point in y-direction




Complex notation for EM waves
* Write cosine in terms of exponential

& o 1 ( kz—wt+ —i( kz—wt+
E(z,t)=XE, c:os(kz—a)t+q))=xExz(e’(kZ %) 4 il ‘”)

— Note E-field is a real quantity.
* |t is convenient to work with just one component

— Method 1: E(Z,t):)A(Re[Aei(kz—wr)] A=Exei¢

— Method 2: E(Z,t) _ &(Aei(kz—a)t) +C.C.) A= %Exei‘l)

 In nonlinear optics, we have to explicitly include
conjugate term. Leads to extra factor of V.




Wave energy and intensity

* Both E and H fields have a corresponding

energy density (J/m3)
— For static fields (e.g. in capacitors) the energy

density can be calculated through the work
done to set up the field
p=%eE’+tuH’
— Some work is required to polarize the medium
— Energy is contained in both fields, but H field
can be calculated from E field
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H field from E field

« H field for a propagating wave is in phase with E-
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 Amplitudes are not independent
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Energy density in an EM wave

» Back to energy density, non-magnetic

p:E‘gEZ‘F%Mon H =ne cE
g=gn’
1 212 1 2 .2 242
p=sEn E +sune, ckE

uec’ =1
p=¢gn’E’=¢gn’E’ cos’ (kzz = a)t)

Equal energy in both components of wave




Cycle-averaged energy density
* Optical oscillations are faster than detectors

* Average over one cycle:
= 2EZLJ'T *(k,z—oot)dt
= EN L, ) Cos™ (K,.Z— @

p)
— Graphically, we can see this should = 7
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Intensity and the Poynting vector

* Intensity is an energy flux (J/s/cm?)
* In EM the Poynting vector give energy flux

S=ExH

— For our plane wave,

S=ExH=FE, cos(kzz — a)t)neocEO cos(kzz— a)t)fc Xy

S = ne,cE, cos’ (k.z—wt)z

— Sisalong k

 Time average: S=1ngcE 2

* Intensity is the magnitude of S

1 C
IZEnEOCEg :;p:Vphase p

Photon flux:

F=—




Calculating intensity with complex
wave representation

* Using the convention that we work with the
complex form, with the field being the real part

E(z.1)=%Re| A | A=E.c*
— Or write
E(z,t) :Eoe"(kz—w’) E, complex, vector

— take the real part when we want the field

 Time-averaged intensit 1 )
J y IZEHEOCEO'EO

— Notice this is the sum of intensities for the different
polarization components




Example: Michelson interferometer

 calculate output intensity T
— 50-50 beamsplitter for power E, Lo
— Transmitted field: — ol |
e b/s %ﬁEOe_’W é |
* Return ff‘Eoei(ZkLl_wt) Internal L
- Detector  —L1RE, oLK2L+L )0t ] reflected

phase shift

— Reflected field at detector
%ﬁEoei[k(2L2+L3)_wt]

— Total field at detector




Michelson: output intensity

» Calculate intensity of output

I = %nEOCEout .Eout* — %I’ZEOC(|E1|2 -|_|]E2|2 + El .EZ* +E2 El*)

A |k L,—t k2L k2 L
E :%XEOe’[ O ](—e’ 4 2)

1 . o7 ; . R _— _ _ .
I — Engoc( XEOel[kL3 a)t] (_eszLl 4+ elk2L2 )) ) (%XEoel[kL3 a)t] (_ezk2L1 + ezk2L2 ))
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1 2 , ) b
I:§n806|E0| (_elkZLl +ezk2L2).(_e ik2Ly 4 lksz)
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In terms of input intensity [, = EHSOC|E0|
1 ik2(L— k2L - :
Tou =7 o (2 — *AbTh) _ ikl Lz)) In terms of time delay
2(L,-L,)

:%IO(I—cos[kZ(Ll—LZ)]) 2k(L,~L,) =@ . =@




Michelson: time-dependent fields

* Now consider the case where the field has time
dependence

E. (t) = f(EO(t)e_iwot —>E,, (1 ( ) = %(Em (t)_ E, (t — T))

I(t) — %ngoc(|Ein (t)‘2 +|Ein (t _T)|2 +E, (t)'Ein (t . T)* +E,, (t a T)'Ein (t)*)

— This implicitly is a time average over the fast timescale
of the carrier

 Now average over a much longer time

oo

(1(1)) = [ 1(e)de =21, +_]° E,()E, (t—7) di +ce.

—00

This part is the field autocorrelation E,. J‘ E,( (r+1)d

E,c is an even function of 1, so let T = -1




Autocorrelation (Wiener-Khinchin) theorem
Fac( j f(e)f (t+7)dt autocorrelation

« Connect the autocorrelation to the spectrum

FT{[£(e)f (e+v)ar}=[[£(0)f (t+7)dre™ dr
= [F()ar] £ (1 +2)e dr=[ f(e)di] [ f(e+7)e ™ dr |
Let t'=t+7 dt’=dr But flip limits
FTfoe (0} = [ £ ()i [ ()™ ar | = [ f(1)ai[F(-0)] e
= F'(~0) [ f(1)e ™ di=F (~0)F ()

‘ 2

If f(t) is real, then F(w) is even, and  F1, {fAC (t)} = ‘F(a))




Fourier transform spectrometer

« Measure interference, subtract DC, FT to get
spectrum

— Single detector, better signal/noise
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http://chemwiki.ucdavis.edu/Physical Chemistry/Spectroscopy/
Vibrational Spectroscopy/Infrared Spectroscopy/
How an FTIR Spectrometer Operates




Coherence time

* Note that for large time
delay, time averaged
signal is constant (sum of
two intensities)

* Beyond “coherence time”
no interference

« Coherence time is inverse
of spectral bandwidth

Relative Intensity

T =1/Av

Optical Path Difference




