
MATH348-Advanced Engineering Mathematics Homework: Fourier Series - Part II : Solutions

Complex Representation, Resonant Forcing, Bessel’s Inequality, Parseval’s Identity

Text: 11.3-11.4 Lecture Notes : 9-10 Lecture Slides: N/A

Quote of Fourier Series Homework - Part II : Solutions

Whoever can see through all fear will always be safe.

Tao Te Ching : Laozi (late 4th or early 3rd centuries BC)

1. Fourier Series : Nonstandard Period

Let f(x) =

{
0, −2 < x < 0

x, 0 < x < 2
be such that f(x+ 4) = f(x).

1.1. Graphing. Sketch f on (−4, 4).

1.2. Symmetry. Is the function even, odd or neither?

This function is neither even nor odd.

1.3. Integrations. Determine the Fourier coefficients a0, an, bn of f .
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a0 =
1

2L

∫ 1

−1

f (x) dx =
1

4

[∫ 0

−2

0dx+

∫ 2

0

xdx

]
=

=
1

8
x2
∣∣∣∣2
0

=
1

2

an =
1

L

∫ L

−L
f (x) cos

(nπ
L
x
)
dx =

=
1

2

[∫ 0

−2

0 · cos
(nπ

2
x
)
dx+

∫ 2

0

x · cos
(nπ

2
x
)
dx

]
=

=
1

2

[
2x

nπ
sin (nπ2x) +

4

n2π2
cos
(nπ

2
x
)]2

0

=

=
1

2

[
4

n2π2
cos (nπ)− 4

n2π2

]
=

2 (−1)n − 2

n2π2

bn =
1

L

∫ L

−L
f (x) sin

(nπ
L
x
)
dx =

=
1

2

[∫ 0

−2

0 · sin
(nπ

2
x
)

+

∫ 2

0

x · sin
(nπ

2
x
)
dx

]
=

=
1

2

[
−2x

nπ
cos
(nπ

2
x
)

+
4

n2π2
sin
(nπ

2
x
)]2

0

=

=
1

2

[
−4

nπ
(−1)n

]
=

2 (−1)n+1

nπ

f (x) =
1

2
+

∞∑
n=1

[
2 (−1)n − 2

n2π2
cos
(nπ

2
x
)

+
2 (−1)n+1

nπ
sin
(nπ

2
x
)]

a0 =
1

2
an =

2 (−1)n − 2

n2π2
bn =

2 (−1)n+1

nπ

1.4. Truncation. Using http://www.tutor-homework.com/grapher.html, or any other graphing tool, graph the first five terms of your

Fourier Series Representation of f .

2. Fourier Series : Periodic Extension

Let f(x) =


2k

L
x, 0 < x ≤ L

2

2k
L

(L− x), L
2
< x < L

.

2.1. Graphing - I. Sketch a graph f on [−2L, 2L].

http://www.tutor-homework.com/grapher.html
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2.2. Graphing - II. Sketch a graph f∗, the even periodic extension of f , on [−2L, 2L].

2.3. Fourier Series. Calculate the Fourier cosine series for the half-range expansion of f .

We begin with the coefficient a0 and noting that this is nothing more than the area under the curve f(x) we find,

a0 =
1

2L

∫ L

−L
f∗(x)dx(1)

=
1

L

∫ L

0

f(x)dx(2)

=
1

L
· 1

2
Lk(3)

=
k

2
(4)
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Next we have an. Some symmetry, integration by parts and algebra gives,

an =
1

L

∫ L

−L
f∗(x) cos

(nπ
L
x
)
dx(5)

=
2

L

∫ L

0

f(x) cos
(nπ
L
x
)
dx(6)

=
2

L

[
2k

L

∫ L
2

0

x cos
(nπ
L
x
)
dx+

2k

L

∫ L

L
2

(L− x) cos
(nπ
L
x
)
dx

]
(7)

=
4k

L2

[
L

nπ
sin
(nπ
L
x
)∣∣∣∣L2

0

+
L2

n2π2
cos
(nπ
L
x
)∣∣∣∣L2

0

+
L

nπ
(L− x) sin

(nπ
L
x
)∣∣∣∣L

L
2

− L2

n2π2
cos
(nπ
L
x
)∣∣∣∣L

L
2

]
(8)

=
4k

L2

[
L2

2nπ
sin
(nπ

2
x
)

+
L2

n2π2
cos
(nπ

2
x
)
− L2

n2π2
− L2

2nπ
sin
(nπ

2
x
)
− L2

n2π2
(−1)n +

L2

n2π2
cos
(nπ

2
x
)]

(9)

=
4k

n2π2

[
2 cos

(nπ
2
x
)
− (−1)n − 1

]
(10)

Further simplifications can be made. If we note the following pattern,

n = 1 =⇒ a1 = 0,(11)

n = 2 =⇒ a2 = − 16k

22n2
,(12)

n = 3 =⇒ a3 = 0,(13)

n = 4 =⇒ a4 = 0,(14)

n = 5 =⇒ a5 = 0,(15)

n = 6 =⇒ a6 = −−16k

62n2
,(16)

we can write the Fourier cosine series as,

f(x) =
k

2
+

∞∑
n=1

4k

n2π2

[
2 cos

(nπ
2
x
)
− (−1)n − 1

]
cos
(nπ
L
x
)

(17)

=
k

2
− 16k

π2

(
1

22
cos

(
2π

L
x

)
+

1

62
cos

(
6π

L
x

)
+ · · ·

)
(18)

3. Complex Fourier Series

3.1. Orthogonality Results. Show that
〈
einx, e−imx

〉
= 2πδnm where n,m ∈ Z, where 〈f, g〉 =

∫ π

−π
f(x)g(x)dx.

For n 6= m

∫ π

−π
einxe−imxdx =

∫ π

−π
e(n−m)ixdx =

e(n−m)ix

i(n−m)

∣∣∣∣π
−π

=(19)

=
(−1)(n−m)

i(n−m)
− (−1)(n−m)

i(n−m)
= 0(20)

For n = m

∫ π

−π
einxe−imxdx =

∫ π

−π
e(n−m)ixdx =

∫ π

−π
1dx = x|π−π = 2π(21)

=

∫ π

−π
einxe−imxdx =

{
0 n 6= m

2π n = m
= 2πδnm(22)

3.2. Fourier Coefficients. Using the previous orthogonality relation find the Fourier coefficients, cn, for the complex Fourier series,

f(x) =

∞∑
n=−∞

cne
inx.
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f(x) =

∞∑
n=−∞

cne
inx

⇒ f(x)e−imx =

∞∑
n=−∞

cne
inxe−imx

⇒
∫ ∞
−∞

f(x)e−imxdx =

∞∑
n=−∞

∫ π

−π
cne

(n−m)xdx

As we found in (a), the integral on the right is 0 for all values of n except n=m

⇒
∫ π

−π
f(x)e−imxdx = cm2π

⇒ 1

2π

∫ π

−π
f(x)e−imxdx = cm

cn =
1

2π

∫ π

−π
f(x)e−inxdx

Because m=n we can replace our m’s with n’s to get the formula for cn

3.3. Complex Fourier Series Representation. Find the complex Fourier coefficients for f(x) = x2, −π < x < π, f(x+ 2π) = f(x).

f(x) =

∞∑
n=−∞

cne
inx(23)

cn =
1

2π

∫ π

−π
f(x)e−inxdx =

1

2π

∫ π

−π
x2e−inxdx(24)

=
1

2π

[
−x2

in
e−inx +

2x

n2
e−inx +

2

in3
e−inx

]π
−π

(25)

=
1

2π

[(
−x2

in
+

2x

n2
+

2

in3

)
e−inx

]π
−π

(26)

=
1

2π

[(
−π2

in
+

2π

n2
+

2

in3
+
π2

in
+

2π

n2
− 2

in3

)
(−1)n

]
(27)

=
1

2π

[
4π

n2
(−1)n

]
=

2

n2
(−1)n n 6= 0(28)

For n = 0(29)

c0 =
1

2π

∫ π

−π
x2ei(0)xdx =

1

2π

∫ π

−π
x2dx =

1

2π

[
1

3
x2
]π
−π

=(30)

=
π2

3
(31)

f(x) =
π2

3
+

∞∑
n=−∞,n6=0

2

n2
(−1)neinx(32)

3.4. Conversion to Real Fourier Series. Using the complex Fourier series representation of f recover its associated real Fourier series.
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f(x) =
π2

3
+

∞∑
n=−∞,n6=0

2

n2
(−1)neinx(33)

=
π2

3
+

−1∑
n=−∞

2

n2
(−1)neinx +

∞∑
n=1

2

n2
(−1)neinx(34)

Substituting n=-n into the first series we get:(35)

=
π2

3
+

∞∑
n=1

2

n2
(−1)ne−inx +

∞∑
n=1

2

n2
(−1)neinx(36)

=
π2

3
+

∞∑
n=1

2

n2
(−1)n

(
e−inx + einx

)
(37)

Using Euler’s Formula:(38)

=
π2

3
+

∞∑
n=1

2

n2
(−1)n (cos(nx)− i sin(nx) + cos(nx) + sin(nx))(39)

The Real Fourier Series Representation:(40)

f(x) =
π2

3
+

∞∑
n=1

4

n2
(−1)n cos(nx)(41)

4. Periodic Forcing of Simple Harmonic Oscillators

Consider the ODE, which is commonly used to model forced simple harmonic oscillation,

y′′ + 9y = f(t),(42)

f(t) = |t|, −π ≤ t < π, f(t+ 2π) = f(t).(43)

Since the forcing function (43) is a periodic function we can study (42) by expressing f(t) as a Fourier series. 1 2

4.1. Fourier Series Representation. Express f(t) as a real Fourier series.

4.2. Method of Undetermined Coefficients. The solution to the homogeneous problem associated with (42) is yh(t) = c1 cos(3t) +

c2 sin(3t), c1, c2 ∈ R. Knowing this, if you were to use the method of undetermined coefficients3 then what would your choice for the

particular solution, yp(t)? do not solve for the unknown constants

4.3. Resonant Modes. What is the particular solution associated with the third Fourier mode of the forcing function?4

4.4. Structural Changes. What is the long term behavior of the solution to (42) subject to (43)? What if the ODE had the form

y′′ + 4y = f(t)?

5. Error Analysis and Applications

We have that for a reasonable 2π−periodic function there exist coefficients a0, an, bn such that

f(x) = a0 +

∞∑
n=1

an cos(nx) + bn sin(nx).(44)

This is, of course, the Fourier series representation of the function f but, as we know, computational devices are not well-suited to infinite

sums. Thus, we would like to know how f is approximated by

f(x) ≈ fN (x) = a0 +

N∑
n=1

an cos(nx) + bn sin(nx),(45)

were this N th−partial sum is called a trigonometric polynomial. Since fN approximates f on an interval, we define our error as

E =

∫ π

−π
(f − fN )2dx,(46)

1The advantage of expressing f(t) as a Fourier series is its validity for any time t. An alternative approach have been to construct a solution over

each interval nπ < t < (n+1)π and then piece together the final solution assuming that the solution and its first derivative is continuous at each t = nπ.
2It is worth noting that this concepts are used by structural engineers, a sub-disciple of civil engineering, to study the effects of periodic forcing on

buildings and bridges. In fact, this problem originate from a textbook on structural engineering.
3This is also known as the method of the ‘lucky guess’ in your differential equations text.
4Each term in a Fourier series is called a mode. The first mode is sometimes called the fundamental mode. The rest of the modes, called harmonics

in acoustics, are just referenced by number. The third Fourier mode would be the third term of Fourier summation

http://en.wikipedia.org/wiki/Harmonic
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which is called the squared error of fN .5 It can be shown that this squared error can be written as

E =

∫ π

−π
f2dx− π

[
2a20 +

N∑
n=1

(a2n + b2n)

]
.(47)

It is plausible that as lim
N→∞

fN = f and E → 0. Thus, from (47) we have

2a20 +

∞∑
n=1

(a2n + b2n) =
1

π

∫ π

−π
f2dx,(48)

which is called Parseval’s identity.6

5.1. Application of Mean Square Error. Let f(x) = x2 for x ∈ (−π, π) such that f(x+ 2π) = f(x). Determine the value of N so that

E < 0.001.

Application of the previous formulae gives that,

E =

∫ π

π

x4dx− π

[
2
π4

9
+

N∑
n=1

16

n4

]
(49)

=
8π5

45
− 16π

N∑
n=1

1

n4
(50)

Now we must figure out what N value will make E < 0.001. Excel can do this but I have created a mathematica notebook, that is linked

to the blog that can do it as well. Here is a screenshot of the results.

So, it seems like when N = 26 the error drops below 0.001.

5.2. Application of Parseval’s identity. Using the previous function and Parseval’s identity show that

∞∑
n=1

1

n4
=
π4

90
.

5 We choose to square the integrand so that there can be no possible cancellation of positive errors/areas with negative errors/areas.
6These are the main equations associated with the error analysis of Fourier series. A student interested in the derivations should consult Kreyszig’s

section 11.4, 9th edition.
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We know that as N →∞ the error goes to zero. Thus from equation (49) we have that

∞∑
n=1

1

n4
=

8π5

45

1

16π
=
π4

90
,(51)

which is the desired result.
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