MATH348-Advanced Engineering Mathematics Homework: Fourier Series - Part II : Solutions

COMPLEX REPRESENTATION, RESONANT FORCING, BESSEL'S INEQUALITY, PARSEVAL'S IDENTITY

Text: 11.3-11.4

Lecture Notes : 9-10

Lecture Slides: N/A

 Quote of Fourier Series Homework - Part II : Solutions

 Whoever can see through all fear will always be safe.

 Tao Te Ching : Laozi (late 4th or early 3rd centuries BC)

1. Fourier Series : Nonstandard Period

Let $f(x) = \begin{cases} 0, & -2 < x < 0 \\ x, & 0 < x < 2 \end{cases}$ be such that f(x+4) = f(x).

1.2. Symmetry. Is the function even, odd or neither?

This function is neither even nor odd.

1.3. Integrations. Determine the Fourier coefficients a_0, a_n, b_n of f.

$$a_{0} = \frac{1}{2L} \int_{-1}^{1} f(x) dx = \frac{1}{4} \left[\int_{-2}^{0} 0 dx + \int_{0}^{2} x dx \right] = \\ = \frac{1}{8} x^{2} \Big|_{0}^{2} = \frac{1}{2} \\ a_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi}{L}x\right) dx = \\ = \frac{1}{2} \left[\int_{-2}^{0} 0 \cdot \cos\left(\frac{n\pi}{2}x\right) dx + \int_{0}^{2} x \cdot \cos\left(\frac{n\pi}{2}x\right) dx \right] = \\ = \frac{1}{2} \left[\frac{2x}{n\pi} \sin\left(n\pi 2x\right) + \frac{4}{n^{2}\pi^{2}} \cos\left(\frac{n\pi}{2}x\right) \right]_{0}^{2} = \\ = \frac{1}{2} \left[\frac{4}{n^{2}\pi^{2}} \cos\left(n\pi\right) - \frac{4}{n^{2}\pi^{2}} \right] = \frac{2(-1)^{n} - 2}{n^{2}\pi^{2}} \\ b_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi}{L}x\right) dx = \\ = \frac{1}{2} \left[\int_{-2}^{0} 0 \cdot \sin\left(\frac{n\pi}{2}x\right) + \int_{0}^{2} x \cdot \sin\left(\frac{n\pi}{2}x\right) dx \right] = \\ = \frac{1}{2} \left[\int_{-2}^{-2} \cos\left(\frac{n\pi}{2}x\right) + \frac{4}{n^{2}\pi^{2}} \sin\left(\frac{n\pi}{2}x\right) dx \right] = \\ = \frac{1}{2} \left[\frac{-2x}{n\pi} \cos\left(\frac{n\pi}{2}x\right) + \frac{4}{n^{2}\pi^{2}} \sin\left(\frac{n\pi}{2}x\right) \right]_{0}^{2} = \\ = \frac{1}{2} \left[\frac{-4}{n\pi} (-1)^{n} \right] = \frac{2(-1)^{n+1}}{n\pi} \\ f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \left[\frac{2(-1)^{n} - 2}{n^{2}\pi^{2}} \cos\left(\frac{n\pi}{2}x\right) + \frac{2(-1)^{n+1}}{n\pi} \sin\left(\frac{n\pi}{2}x\right) \right] \\ a_{0} = \frac{1}{2} \quad a_{n} = \frac{2(-1)^{n} - 2}{n^{2}\pi^{2}} \quad b_{n} = \frac{2(-1)^{n+1}}{n\pi}$$

1.4. **Truncation.** Using http://www.tutor-homework.com/grapher.html, or any other graphing tool, graph the first five terms of your Fourier Series Representation of f.

2. Fourier Series : Periodic Extension

Let
$$f(x) = \begin{cases} \frac{2k}{L}x, & 0 < x \le \frac{L}{2} \\ \\ \frac{2k}{L}(L-x), & \frac{L}{2} < x < L \end{cases}$$

 $\mathbf{2}$

2.2. Graphing - II. Sketch a graph f^* , the even periodic extension of f, on [-2L, 2L].

2.3. Fourier Series. Calculate the Fourier cosine series for the half-range expansion of f.

We begin with the coefficient a_0 and noting that this is nothing more than the area under the curve f(x) we find,

(1)
$$a_0 = \frac{1}{2L} \int_{-L}^{L} f^*(x) dx$$

(2)
$$= \frac{1}{L} \int_0^1 f(x) dx$$

$$(3) = \frac{1}{L} \cdot \frac{1}{2}Lk$$

$$(4) = \frac{k}{2}$$

Next we have a_n . Some symmetry, integration by parts and algebra gives,

(5)
$$a_n = \frac{1}{L} \int_{-L}^{L} f^*(x) \cos\left(\frac{n\pi}{L}x\right) dx$$

(6)
$$= \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi}{L}x\right) dx$$

(7)
$$= \frac{2}{L} \left[\frac{2k}{L} \int_0^{\frac{L}{2}} x \cos\left(\frac{n\pi}{L}x\right) dx + \frac{2k}{L} \int_{\frac{L}{2}}^L (L-x) \cos\left(\frac{n\pi}{L}x\right) dx \right]$$

(8)
$$= \frac{4k}{L^2} \left[\frac{L}{n\pi} \sin\left(\frac{n\pi}{L}x\right) \Big|_0^{\frac{L}{2}} + \frac{L^2}{n^2\pi^2} \cos\left(\frac{n\pi}{L}x\right) \Big|_0^{\frac{L}{2}} + \frac{L}{n\pi} (L-x) \sin\left(\frac{n\pi}{L}x\right) \Big|_{\frac{L}{2}}^{L} - \frac{L^2}{n^2\pi^2} \cos\left(\frac{n\pi}{L}x\right) \Big|_{\frac{L}{2}}^{L} \right]$$

$$= \frac{4k}{L^2} \left[\frac{L^2}{2n\pi} \sin\left(\frac{n\pi}{2}x\right) + \frac{L^2}{n^2\pi^2} \cos\left(\frac{n\pi}{2}x\right) - \frac{L^2}{n^2\pi^2} - \frac{L^2}{2n\pi} \sin\left(\frac{n\pi}{2}x\right) - \frac{L^2}{n^2\pi^2} (-1)^n + \frac{L^2}{n^2\pi^2} \cos\left(\frac{n\pi}{2}x\right) \right]$$
$$= \frac{4k}{n^2\pi^2} \left[2\cos\left(\frac{n\pi}{2}x\right) - (-1)^n - 1 \right]$$

(10)
$$= \frac{n^2}{n^2 \pi^2} \left[2 \cos\left(\frac{n\pi}{2}x\right) - (-1)^n - 1 \right]$$

Further simplifications can be made. If we note the following pattern,

(11)
$$n=1 \implies a_1=0,$$

(12)
$$n = 2 \implies a_2 = -\frac{10k}{2^2 n^2}$$
(13)
$$n = 3 \implies a_2 = 0$$

$$\begin{array}{c} n = 3 \\ (14) \\ n = 4 \\ \hline n = 4 \\ \hline n = 0 \\ (14) \\ n = 4 \\ \hline n = 0 \\ (14) \\ \hline n = 4 \\ \hline n = 0 \\ \hline n = 0 \\ (14) \\ \hline n = 4 \\ \hline n = 0 \\ \hline n = 0 \\ (14) \\ \hline n = 1 \\ \hline n = 0 \\$$

(14)
$$n = 4 \implies a_4 = 0,$$

(15) $n = 5 \implies a_5 = 0,$

(16)
$$n = 6 \implies a_6 = -\frac{-16k}{6^2 n^2},$$

we can write the Fourier cosine series as,

(17)
$$f(x) = \frac{k}{2} + \sum_{n=1}^{\infty} \frac{4k}{n^2 \pi^2} \left[2\cos\left(\frac{n\pi}{2}x\right) - (-1)^n - 1 \right] \cos\left(\frac{n\pi}{L}x\right)$$

(18)
$$= \frac{k}{2} - \frac{16k}{\pi^2} \left(\frac{1}{2^2} \cos\left(\frac{2\pi}{L}x\right) + \frac{1}{6^2} \cos\left(\frac{6\pi}{L}x\right) + \cdots \right)$$

3. Complex Fourier Series

3.1. Orthogonality Results. Show that $\langle e^{inx}, e^{-imx} \rangle = 2\pi \delta_{nm}$ where $n, m \in \mathbb{Z}$, where $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$.

(19) For
$$n \neq m$$

$$\int_{-\pi}^{\pi} e^{inx} e^{-imx} dx = \int_{-\pi}^{\pi} e^{(n-m)ix} dx = \left. \frac{e^{(n-m)ix}}{i(n-m)} \right|_{-\pi}^{\pi} = (-1)^{(n-m)}$$

(20)
$$= \frac{(-1)^{(n-m)}}{i(n-m)} - \frac{(-1)^{(n-m)}}{i(n-m)} = 0$$

(21) For
$$n = m$$
 $\int_{-\pi}^{\pi} e^{inx} e^{-imx} dx = \int_{-\pi}^{\pi} e^{(n-m)ix} dx = \int_{-\pi}^{\pi} 1 dx = x|_{-\pi}^{\pi} = 2\pi$

(22)
$$= \int_{-\pi}^{\pi} e^{inx} e^{-imx} dx = \begin{cases} 0 & n \neq m \\ 2\pi & n = m \end{cases} = 2\pi \delta_{nm}$$

3.2. Fourier Coefficients. Using the previous orthogonality relation find the Fourier coefficients, c_n , for the complex Fourier series, $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}.$

$$\begin{aligned} f(x) &= \sum_{n=-\infty}^{\infty} c_n e^{inx} \\ \Rightarrow & f(x) e^{-imx} = \sum_{n=-\infty}^{\infty} c_n e^{inx} e^{-imx} \\ \Rightarrow & \int_{-\infty}^{\infty} f(x) e^{-imx} dx = \sum_{n=-\infty}^{\infty} \int_{-\pi}^{\pi} c_n e^{(n-m)x} dx \\ & \text{As we found in (a), the integral on the right is 0 for all values of n except n=m} \end{aligned}$$

 $\Rightarrow \int_{-\pi}^{\pi} f(x) e^{-imx} dx = c_m 2\pi$ $\Rightarrow \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-imx} dx = c_m$ $c_n \quad = \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$

Because m=n we can replace our m's with n's to get the formula for c_n

3.3. Complex Fourier Series Representation. Find the complex Fourier coefficients for $f(x) = x^2$, $-\pi < x < \pi$, $f(x + 2\pi) = f(x)$.

(23)
$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$$

(24)
$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 e^{-inx} dx$$

(25)
$$= \frac{1}{2\pi} \left[\frac{-x^2}{in} e^{-inx} + \frac{2x}{n^2} e^{-inx} + \frac{2}{in^3} e^{-inx} \right]_{-\pi}$$

(26)
$$= \frac{1}{2\pi} \left[\left(\frac{-x^2}{in} + \frac{2x}{n^2} + \frac{2}{in^3} \right) e^{-inx} \right]_{-\pi}^{\pi}$$

(27)
$$= \frac{1}{2\pi} \left[\left(\frac{-\pi^2}{in} + \frac{2\pi}{n^2} + \frac{2}{in^3} + \frac{\pi^2}{in} + \frac{2\pi}{n^2} - \frac{2}{in^3} \right) (-1)^n \right]$$

(28)
$$= \frac{1}{2\pi} \left[\frac{4\pi}{n^2} (-1)^n \right] = \frac{2}{n^2} (-1)^n \qquad n \neq 0$$

(29) For
$$n = 0$$

(30)
$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 e^{i(0)x} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{1}{2\pi} \left[\frac{1}{3} x^2 \right]_{-\pi}^{\pi} = \frac{1}{2\pi} \left[\frac{1}{3} x^2 \right]_$$

$$(31) \qquad \qquad = \quad \frac{\pi^2}{3}$$

(32)
$$f(x) = \frac{\pi^2}{3} + \sum_{n=-\infty, n\neq 0}^{\infty} \frac{2}{n^2} (-1)^n e^{inx}$$

3.4. Conversion to Real Fourier Series. Using the complex Fourier series representation of f recover its associated real Fourier series.

(33)
$$f(x) = \frac{\pi^2}{3} + \sum_{n=-\infty, n\neq 0}^{\infty} \frac{2}{n^2} (-1)^n e^{inx}$$

(34)
$$= \frac{\pi^2}{3} + \sum_{n=-\infty}^{-1} \frac{2}{n^2} (-1)^n e^{inx} + \sum_{n=1}^{\infty} \frac{2}{n^2} (-1)^n e^{inx}$$
(35) Substituting n=-n into the first series we get

Substituting n=-n into the first series we get:

(36)
$$= -\frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{2}{n^2} (-1)^n e^{-inx} + \sum_{n=1}^{\infty} \frac{2}{n^2} (-1)^n e^{inx}$$

(37)
$$= \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{2}{n^2} (-1)^n \left(e^{-inx} + e^{inx} \right)$$

$$= \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{2}{n^2} (-1)^n \left(\cos(nx) - i\sin(nx) + \cos(nx) + \sin(nx) \right)$$

The Real Fourier Series Representation:

(41)
$$f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} (-1)^n \cos(nx)$$

4. Periodic Forcing of Simple Harmonic Oscillators

Consider the ODE, which is commonly used to model forced simple harmonic oscillation,

(42)
$$y'' + 9y = f(t),$$

(43)
$$f(t) = |t|, \ -\pi \le t < \pi, \ f(t+2\pi) = f(t)$$

Since the forcing function (43) is a periodic function we can study (42) by expressing f(t) as a Fourier series.¹

4.1. Fourier Series Representation. Express f(t) as a real Fourier series.

4.2. Method of Undetermined Coefficients. The solution to the homogeneous problem associated with (42) is $y_h(t) = c_1 \cos(3t) + c_2 \cos(3t) + c_2 \cos(3t) + c_3 \cos(3t) + c_4 \cos(3t)$ $c_2 \sin(3t), c_1, c_2 \in \mathbb{R}$. Knowing this, if you were to use the method of undetermined coefficients³ then what would your choice for the particular solution, $y_p(t)$? DO NOT SOLVE FOR THE UNKNOWN CONSTANTS

4.3. Resonant Modes. What is the particular solution associated with the third Fourier mode of the forcing function?⁴

4.4. Structural Changes. What is the long term behavior of the solution to (42) subject to (43)? What if the ODE had the form y'' + 4y = f(t)?

5. Error Analysis and Applications

We have that for a reasonable 2π -periodic function there exist coefficients a_0, a_n, b_n such that

(44)
$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx).$$

This is, of course, the Fourier series representation of the function f but, as we know, computational devices are not well-suited to infinite sums. Thus, we would like to know how f is approximated by

(45)
$$f(x) \approx f_N(x) = a_0 + \sum_{n=1}^N a_n \cos(nx) + b_n \sin(nx),$$

were this N^{th} -partial sum is called a trigonometric polynomial. Since f_N approximates f on an interval, we define our error as

(46)
$$E = \int_{-\pi}^{\pi} (f - f_N)^2 dx$$

(39)

(40)

¹The advantage of expressing f(t) as a Fourier series is its validity for any time t. An alternative approach have been to construct a solution over each interval $n\pi < t < (n+1)\pi$ and then piece together the final solution assuming that the solution and its first derivative is continuous at each $t = n\pi$.

²It is worth noting that this concepts are used by structural engineers, a sub-disciple of civil engineering, to study the effects of periodic forcing on buildings and bridges. In fact, this problem originate from a textbook on structural engineering.

³This is also known as the method of the 'lucky guess' in your differential equations text.

⁴Each term in a Fourier series is called a mode. The first mode is sometimes called the fundamental mode. The rest of the modes, called *harmonics* in acoustics, are just referenced by number. The third Fourier mode would be the third term of Fourier summation

which is called the squared error of f_N .⁵ It can be shown that this squared error can be written as

(47)
$$E = \int_{-\pi}^{\pi} f^2 dx - \pi \left[2a_0^2 + \sum_{n=1}^{N} (a_n^2 + b_n^2) \right].$$

It is plausible that as $\lim_{N\to\infty} f_N = f$ and $E \to 0$. Thus, from (47) we have

(48)
$$2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2 dx,$$

which is called Parseval's identity.⁶

5.1. Application of Mean Square Error. Let $f(x) = x^2$ for $x \in (-\pi, \pi)$ such that $f(x + 2\pi) = f(x)$. Determine the value of N so that E < 0.001.

Application of the previous formulae gives that,

(49)
$$E = \int_{\pi}^{\pi} x^4 dx - \pi \left[2\frac{\pi^4}{9} + \sum_{n=1}^{N} \frac{16}{n^4} \right]$$

(50)
$$= \frac{8\pi^5}{45} - 16\pi \sum_{n=1}^{N} \frac{1}{n^4}$$

Now we must figure out what N value will make E < 0.001. Excel can do this but I have created a mathematica notebook, that is linked to the blog that can do it as well. Here is a screenshot of the results.

For	N = 1	the	error	is	4.13802
For	N = 2	the	error	is	0.996424
For	N = 3	the	error	is	0.375863
For	N=4	the	error	is	0.179513
For	N = 5	the	error	is	0.0990886
For	N = 6	the	error	is	0.0603035
For	N = 7	the	error	is	0.0393683
For	N = 8	the	error	is	0.0270964
For	N = 9	the	error	is	0.0194352
For	N = 10	the	error	is	0.0144086
For	N = 11	the	error	is	0.0109754
For	N = 12	the	error	is	0.00855134
For	N = 13	the	error	is	0.00679141
For	N=14	the	error	is	0.00548296
For	N = 15	the	error	is	0.00449006
For	N = 16	the	error	is	0.00372307
For	N=17	the	error	is	0.00312124
For	N = 18	the	error	is	0.00264241
For	N=19	the	error	is	0.0022567
For	N = 20	the	error	is	0.00194254
For	N = 21	the	error	is	0.00168409
For	N = 22	the	error	is	0.00146951
For	N = 23	the	error	is	0.00128989
For	N = 24	the	error	is	0.00113838
For	N = 25	the	error	is	0.0010097
For	N = 26	the	error	is	0.000899709
For	N = 27	the	error	is	0.000805126
For	N = 28	the	error	is	0.000723347
For	N=29	the	error	is	0.000652279
$\mathbf{C}_{\mathbf{c}}$ it groups like when $\mathbf{N} = \mathbf{Q}\mathbf{c}$ the summer					

So, it seems like when N = 26 the error drops below 0.001.

5.2. Application of Parseval's identity. Using the previous function and Parseval's identity show that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

 $^{^{5}}$ We choose to square the integrand so that there can be no possible cancellation of positive errors/areas with negative errors/areas.

 $^{^{6}}$ These are the main equations associated with the error analysis of Fourier series. A student interested in the derivations should consult Kreyszig's section 11.4, 9th edition.

We know that as $N \rightarrow \infty$ the error goes to zero. Thus from equation (49) we have that

(51)
$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{8\pi^5}{45} \frac{1}{16\pi} = \frac{\pi^4}{90},$$

which is the desired result.