Whoever can see through all fear will always be safe.

Tao Te Ching : Laozi (late $4^{\text {th }}$ or early $3^{\text {rd }}$ centuries BC)

1. Fourier Series : Nonstandard Period

Let $f(x)=\left\{\begin{array}{rr}0, & -2<x<0 \\ x, & 0<x<2\end{array}\right.$ be such that $f(x+4)=f(x)$.
1.1. Graphing. Sketch f on $(-4,4)$.

1.2. Symmetry. Is the function even, odd or neither?

This function is neither even nor odd.
1.3. Integrations. Determine the Fourier coefficients a_{0}, a_{n}, b_{n} of f.

$$
\begin{aligned}
& a_{0}=\frac{1}{2 L} \int_{-1}^{1} f(x) d x=\frac{1}{4}\left[\int_{-2}^{0} 0 d x+\int_{0}^{2} x d x\right]= \\
&=\left.\frac{1}{8} x^{2}\right|_{0} ^{2}=\frac{1}{2} \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x= \\
&=\frac{1}{2}\left[\int_{-2}^{0} 0 \cdot \cos \left(\frac{n \pi}{2} x\right) d x+\int_{0}^{2} x \cdot \cos \left(\frac{n \pi}{2} x\right) d x\right]= \\
&=\frac{1}{2}\left[\frac{2 x}{n \pi} \sin (n \pi 2 x)+\frac{4}{n^{2} \pi^{2}} \cos \left(\frac{n \pi}{2} x\right)\right]_{0}^{2}= \\
&=\frac{1}{2}\left[\frac{4}{n^{2} \pi^{2}} \cos (n \pi)-\frac{4}{n^{2} \pi^{2}}\right]=\frac{2(-1)^{n}-2}{n^{2} \pi^{2}} \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x= \\
&=\frac{1}{2}\left[\int_{-2}^{0} 0 \cdot \sin \left(\frac{n \pi}{2} x\right)+\int_{0}^{2} x \cdot \sin \left(\frac{n \pi}{2} x\right) d x\right]= \\
&=\frac{1}{2}\left[\frac{-2 x}{n \pi} \cos \left(\frac{n \pi}{2} x\right)+\frac{4}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{2} x\right)\right]_{0}^{2}= \\
&=\frac{1}{2}\left[\frac{-4}{n \pi}(-1)^{n}\right]=\frac{2(-1)^{n+1}}{n \pi} \\
& f(x)=\frac{1}{2}+\sum_{n=1}^{\infty}\left[\frac{2(-1)^{n}-2}{n^{2} \pi^{2}} \cos \left(\frac{n \pi}{2} x\right)+\frac{2(-1)^{n+1}}{n \pi} \sin \left(\frac{n \pi}{2} x\right)\right] \\
& a_{0}=\frac{1}{2} a_{n}=\frac{2(-1)^{n}-2}{n^{2} \pi^{2}} \quad b_{n}=\frac{2(-1)^{n+1}}{n \pi}
\end{aligned}
$$

1.4. Truncation. Using http://www.tutor-homework.com/grapher.html, or any other graphing tool, graph the first five terms of your Fourier Series Representation of f.

2. Fourier Series : Periodic Extension

Let $f(x)=\left\{\begin{array}{cl}\frac{2 k}{L} x, & 0<x \leq \frac{L}{2} \\ \frac{2 k}{L}(L-x), & \frac{L}{2}<x<L\end{array}\right.$.
2.1. Graphing - I. Sketch a graph f on $[-2 L, 2 L]$.

2.2. Graphing - II. Sketch a graph f^{*}, the even periodic extension of f, on $[-2 L, 2 L]$.
Praph of Even
2.3. Fourier Series. Calculate the Fourier cosine series for the half-range expansion of f.

We begin with the coefficient a_{0} and noting that this is nothing more than the area under the curve $f(x)$ we find,

$$
\begin{aligned}
a_{0} & =\frac{1}{2 L} \int_{-L}^{L} f^{*}(x) d x \\
& =\frac{1}{L} \int_{0}^{L} f(x) d x \\
& =\frac{1}{L} \cdot \frac{1}{2} L k \\
& =\frac{k}{2}
\end{aligned}
$$

Next we have a_{n}. Some symmetry, integration by parts and algebra gives,

$$
\begin{equation*}
a_{n}=\frac{1}{L} \int_{-L}^{L} f^{*}(x) \cos \left(\frac{n \pi}{L} x\right) d x \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{2}{L}\left[\frac{2 k}{L} \int_{0}^{\frac{L}{2}} x \cos \left(\frac{n \pi}{L} x\right) d x+\frac{2 k}{L} \int_{\frac{L}{2}}^{L}(L-x) \cos \left(\frac{n \pi}{L} x\right) d x\right] \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{4 k}{L^{2}}\left[\left.\frac{L}{n \pi} \sin \left(\frac{n \pi}{L} x\right)\right|_{0} ^{\frac{L}{2}}+\left.\frac{L^{2}}{n^{2} \pi^{2}} \cos \left(\frac{n \pi}{L} x\right)\right|_{0} ^{\frac{L}{2}}+\left.\frac{L}{n \pi}(L-x) \sin \left(\frac{n \pi}{L} x\right)\right|_{\frac{L}{2}} ^{L}-\left.\frac{L^{2}}{n^{2} \pi^{2}} \cos \left(\frac{n \pi}{L} x\right)\right|_{\frac{L}{2}} ^{L}\right] \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{4 k}{L^{2}}\left[\frac{L^{2}}{2 n \pi} \sin \left(\frac{n \pi}{2} x\right)+\frac{L^{2}}{n^{2} \pi^{2}} \cos \left(\frac{n \pi}{2} x\right)-\frac{L^{2}}{n^{2} \pi^{2}}-\frac{L^{2}}{2 n \pi} \sin \left(\frac{n \pi}{2} x\right)-\frac{L^{2}}{n^{2} \pi^{2}}(-1)^{n}+\frac{L^{2}}{n^{2} \pi^{2}} \cos \left(\frac{n \pi}{2} x\right)\right] \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{4 k}{n^{2} \pi^{2}}\left[2 \cos \left(\frac{n \pi}{2} x\right)-(-1)^{n}-1\right] \tag{10}
\end{equation*}
$$

Further simplifications can be made. If we note the following pattern,

$$
\begin{align*}
& n=1 \quad \Longrightarrow \quad a_{1}=0, \tag{11}\\
& n=2 \quad \Longrightarrow \quad a_{2}=-\frac{16 k}{2^{2} n^{2}}, \tag{12}\\
& n=3 \quad \Longrightarrow \quad a_{3}=0, \tag{13}\\
& n=4 \quad \Longrightarrow \quad a_{4}=0, \tag{14}\\
& n=5 \quad \Longrightarrow \quad a_{5}=0, \tag{15}\\
& n=6 \quad \Longrightarrow \quad a_{6}=-\frac{-16 k}{6^{2} n^{2}}, \tag{16}
\end{align*}
$$

we can write the Fourier cosine series as,

$$
\begin{align*}
f(x) & =\frac{k}{2}+\sum_{n=1}^{\infty} \frac{4 k}{n^{2} \pi^{2}}\left[2 \cos \left(\frac{n \pi}{2} x\right)-(-1)^{n}-1\right] \cos \left(\frac{n \pi}{L} x\right) \tag{17}\\
& =\frac{k}{2}-\frac{16 k}{\pi^{2}}\left(\frac{1}{2^{2}} \cos \left(\frac{2 \pi}{L} x\right)+\frac{1}{6^{2}} \cos \left(\frac{6 \pi}{L} x\right)+\cdots\right) \tag{18}
\end{align*}
$$

3. Complex Fourier Series

3.1. Orthogonality Results. Show that $\left\langle e^{i n x}, e^{-i m x}\right\rangle=2 \pi \delta_{n m}$ where $n, m \in \mathbb{Z}$, where $\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$.

$$
\begin{align*}
\text { For } n \neq m \quad & \int_{-\pi}^{\pi} e^{i n x} e^{-i m x} d x=\int_{-\pi}^{\pi} e^{(n-m) i x} d x=\left.\frac{e^{(n-m) i x}}{i(n-m)}\right|_{-\pi} ^{\pi}= \tag{19}\\
= & \frac{(-1)^{(n-m)}}{i(n-m)}-\frac{(-1)^{(n-m)}}{i(n-m)}=0 \tag{20}\\
\text { For } n=m \quad & \int_{-\pi}^{\pi} e^{i n x} e^{-i m x} d x=\int_{-\pi}^{\pi} e^{(n-m) i x} d x=\int_{-\pi}^{\pi} 1 d x=\left.x\right|_{-\pi} ^{\pi}=2 \pi \tag{21}\\
= & \int_{-\pi}^{\pi} e^{i n x} e^{-i m x} d x=\left\{\begin{array}{ll}
0 & n \neq m \\
2 \pi & n=m
\end{array}=2 \pi \delta_{n m}\right.
\end{align*}
$$

3.2. Fourier Coefficients. Using the previous orthogonality relation find the Fourier coefficients, c_{n}, for the complex Fourier series, $f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$.

$$
\begin{aligned}
f(x) & =\sum_{n=-\infty}^{\infty} c_{n} e^{i n x} \\
& \Rightarrow f(x) e^{-i m x}=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x} e^{-i m x} \\
& \Rightarrow \int_{-\infty}^{\infty} f(x) e^{-i m x} d x=\sum_{n=-\infty}^{\infty} \int_{-\pi}^{\pi} c_{n} e^{(n-m) x} d x
\end{aligned}
$$

As we found in (a), the integral on the right is 0 for all values of n except $n=m$
$\Rightarrow \quad \int_{-\pi}^{\pi} f(x) e^{-i m x} d x=c_{m} 2 \pi$
$\Rightarrow \quad \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i m x} d x=c_{m}$
$c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x$

Because $\mathrm{m}=\mathrm{n}$ we can replace our m 's with n 's to get the formula for c_{n}
3.3. Complex Fourier Series Representation. Find the complex Fourier coefficients for $f(x)=x^{2},-\pi<x<\pi, f(x+2 \pi)=f(x)$.

$$
\begin{align*}
& f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x} \tag{23}\\
& c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} e^{-i n x} d x \tag{24}\\
&=\frac{1}{2 \pi}\left[\frac{-x^{2}}{i n} e^{-i n x}+\frac{2 x}{n^{2}} e^{-i n x}+\frac{2}{i n^{3}} e^{-i n x}\right]_{-\pi}^{\pi} \tag{25}\\
&=\frac{1}{2 \pi}\left[\left(\frac{-x^{2}}{i n}+\frac{2 x}{n^{2}}+\frac{2}{i n^{3}}\right) e^{-i n x}\right]_{-\pi}^{\pi} \tag{26}\\
&=\frac{1}{2 \pi}\left[\left(\frac{-\pi^{2}}{i n}+\frac{2 \pi}{n^{2}}+\frac{2}{i n^{3}}+\frac{\pi^{2}}{i n}+\frac{2 \pi}{n^{2}}-\frac{2}{i n^{3}}\right)(-1)^{n}\right] \tag{27}\\
&=\frac{1}{2 \pi}\left[\frac{4 \pi}{n^{2}}(-1)^{n}\right]=\frac{2}{n^{2}}(-1)^{n} \quad n \neq 0 \tag{28}\\
& \operatorname{For}_{n}^{n}=0 \tag{29}\\
& c_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} e^{i(0) x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\frac{1}{2 \pi}\left[\frac{1}{3} x^{2}\right]_{-\pi}^{\pi}= \tag{30}\\
&=\frac{\pi^{2}}{3} \tag{31}\\
& f(x)=\frac{\pi^{2}}{3}+\sum_{n=-\infty, n \neq 0}^{\infty} \frac{2}{n^{2}}(-1)^{n} e^{i n x} \tag{32}
\end{align*}
$$

3.4. Conversion to Real Fourier Series. Using the complex Fourier series representation of f recover its associated real Fourier series.

$$
\begin{align*}
f(x) & =\frac{\pi^{2}}{3}+\sum_{n=-\infty, n \neq 0}^{\infty} \frac{2}{n^{2}}(-1)^{n} e^{i n x} \tag{33}\\
& =\frac{\pi^{2}}{3}+\sum_{n=-\infty}^{-1} \frac{2}{n^{2}}(-1)^{n} e^{i n x}+\sum_{n=1}^{\infty} \frac{2}{n^{2}}(-1)^{n} e^{i n x}
\end{align*}
$$

Substituting $\mathrm{n}=-\mathrm{n}$ into the first series we get:

$$
\begin{align*}
& =\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{2}{n^{2}}(-1)^{n} e^{-i n x}+\sum_{n=1}^{\infty} \frac{2}{n^{2}}(-1)^{n} e^{i n x} \tag{35}\\
& =\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{2}{n^{2}}(-1)^{n}\left(e^{-i n x}+e^{i n x}\right) \tag{36}
\end{align*}
$$

Using Euler's Formula:
$=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{2}{n^{2}}(-1)^{n}(\cos (n x)-i \sin (n x)+\cos (n x)+\sin (n x))$
The Real Fourier Series Representation:

$$
\begin{equation*}
f(x)=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{2}}(-1)^{n} \cos (n x) \tag{40}
\end{equation*}
$$

4. Periodic Forcing of Simple Harmonic Oscillators

Consider the ODE, which is commonly used to model forced simple harmonic oscillation,

$$
\begin{align*}
y^{\prime \prime}+9 y & =f(t) \tag{42}\\
f(t) & =|t|, \quad-\pi \leq t<\pi, \quad f(t+2 \pi)=f(t) \tag{43}
\end{align*}
$$

Since the forcing function (43) is a periodic function we can study (42) by expressing $f(t)$ as a Fourier series. ${ }^{1} 2$
4.1. Fourier Series Representation. Express $f(t)$ as a real Fourier series.
4.2. Method of Undetermined Coefficients. The solution to the homogeneous problem associated with (42) is $y_{h}(t)=c_{1} \cos (3 t)+$ $c_{2} \sin (3 t), \quad c_{1}, c_{2} \in \mathbb{R}$. Knowing this, if you were to use the method of undetermined coefficients ${ }^{3}$ then what would your choice for the particular solution, $y_{p}(t)$? DO NOT SOLVE FOR THE UNKNOWN CONSTANTS
4.3. Resonant Modes. What is the particular solution associated with the third Fourier mode of the forcing function? ${ }^{4}$
4.4. Structural Changes. What is the long term behavior of the solution to (42) subject to (43)? What if the ODE had the form $y^{\prime \prime}+4 y=f(t)$?

5. Error Analysis and Applications

We have that for a reasonable 2π-periodic function there exist coefficients a_{0}, a_{n}, b_{n} such that

$$
\begin{equation*}
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x) \tag{44}
\end{equation*}
$$

This is, of course, the Fourier series representation of the function f but, as we know, computational devices are not well-suited to infinite sums. Thus, we would like to know how f is approximated by

$$
\begin{equation*}
f(x) \approx f_{N}(x)=a_{0}+\sum_{n=1}^{N} a_{n} \cos (n x)+b_{n} \sin (n x) \tag{45}
\end{equation*}
$$

were this $N^{t h}$-partial sum is called a trigonometric polynomial. Since f_{N} approximates f on an interval, we define our error as

$$
\begin{equation*}
E=\int_{-\pi}^{\pi}\left(f-f_{N}\right)^{2} d x \tag{46}
\end{equation*}
$$

[^0]which is called the squared error of $f_{N} .{ }^{5}$ It can be shown that this squared error can be written as
\[

$$
\begin{equation*}
E=\int_{-\pi}^{\pi} f^{2} d x-\pi\left[2 a_{0}^{2}+\sum_{n=1}^{N}\left(a_{n}^{2}+b_{n}^{2}\right)\right] . \tag{47}
\end{equation*}
$$

\]

It is plausible that as $\lim _{N \rightarrow \infty} f_{N}=f$ and $E \rightarrow 0$. Thus, from (47) we have

$$
\begin{equation*}
2 a_{0}^{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{2} d x \tag{48}
\end{equation*}
$$

which is called Parseval's identity. ${ }^{6}$
5.1. Application of Mean Square Error. Let $f(x)=x^{2}$ for $x \in(-\pi, \pi)$ such that $f(x+2 \pi)=f(x)$. Determine the value of N so that $E<0.001$.

Application of the previous formulae gives that,

$$
\begin{align*}
E & =\int_{\pi}^{\pi} x^{4} d x-\pi\left[2 \frac{\pi^{4}}{9}+\sum_{n=1}^{N} \frac{16}{n^{4}}\right] \tag{49}\\
& =\frac{8 \pi^{5}}{45}-16 \pi \sum_{n=1}^{N} \frac{1}{n^{4}} \tag{50}
\end{align*}
$$

Now we must figure out what N value will make $E<0.001$. Excel can do this but I have created a mathematica notebook, that is linked to the blog that can do it as well. Here is a screenshot of the results.

$$
\begin{aligned}
& \text { For } N=1 \text { the error is } 4.13802 \\
& \text { For } N=2 \text { the error is } 0.996424 \\
& \text { For } N=3 \text { the error is } 0.375863 \\
& \text { For } N=4 \text { the error is } 0.179513 \\
& \text { For } N=5 \text { the error is } 0.0990886 \\
& \text { For } N=6 \text { the error is } 0.0603035 \\
& \text { For } N=7 \text { the error is } 0.0393683 \\
& \text { For } N=8 \text { the error is } 0.0270964 \\
& \text { For } N=9 \text { the error is } 0.0194352 \\
& \text { For } N=10 \text { the error is } 0.0144086 \\
& \text { For } N=11 \text { the error is } 0.0109754 \\
& \text { For } N=12 \text { the error is } 0.00855134 \\
& \text { For } N=13 \text { the error is } 0.00679141 \\
& \text { For } N=14 \text { the error is } 0.00548296 \\
& \text { For } N=15 \text { the error is } 0.00449006 \\
& \text { For } N=16 \text { the error is } 0.00372307 \\
& \text { For } N=17 \text { the error is } 0.00312124 \\
& \text { For } N=18 \text { the error is } 0.00264241 \\
& \text { For } N=19 \text { the error is } 0.0022567 \\
& \text { For } N=20 \text { the error is } 0.00194254 \\
& \text { For } N=21 \text { the error is } 0.00168409 \\
& \text { For } N=29 \text { the error is } 0.000652279 \\
& \text { For } N=22 \text { the error is } 0.00146951 \\
& \text { For } N=23 \text { the error is } 0.00128989 \\
& \text { For } N=24 \text { the error is } 0.00113838 \\
& \text { For } N=25 \text { the error is } 0.0010097 \\
& \text { For } N=26 \text { the error is } 0.000899709 \\
& \text { For } N=27 \text { the error is } 0.000805126 \\
& \text { Forror is } 0.000723347 \\
& \text { For } N=2
\end{aligned}
$$

So, it seems like when $N=26$ the error drops below 0.001 .
5.2. Application of Parseval's identity. Using the previous function and Parseval's identity show that $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$.

[^1]We know that as $N \rightarrow \infty$ the error goes to zero. Thus from equation (49) we have that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{8 \pi^{5}}{45} \frac{1}{16 \pi}=\frac{\pi^{4}}{90} \tag{51}
\end{equation*}
$$

which is the desired result.

[^0]: ${ }^{1}$ The advantage of expressing $f(t)$ as a Fourier series is its validity for any time t. An alternative approach have been to construct a solution over each interval $n \pi<t<(n+1) \pi$ and then piece together the final solution assuming that the solution and its first derivative is continuous at each $t=n \pi$.
 ${ }^{2}$ It is worth noting that this concepts are used by structural engineers, a sub-disciple of civil engineering, to study the effects of periodic forcing on buildings and bridges. In fact, this problem originate from a textbook on structural engineering.
 ${ }^{3}$ This is also known as the method of the 'lucky guess' in your differential equations text.
 ${ }^{4}$ Each term in a Fourier series is called a mode. The first mode is sometimes called the fundamental mode. The rest of the modes, called harmonics in acoustics, are just referenced by number. The third Fourier mode would be the third term of Fourier summation

[^1]: ${ }^{5}$ We choose to square the integrand so that there can be no possible cancellation of positive errors/areas with negative errors/areas.
 ${ }^{6}$ These are the main equations associated with the error analysis of Fourier series. A student interested in the derivations should consult Kreyszig's section $11.4,9$ th edition.

