
Homework #7 Solutions

1. Given

f(x) =


2k
L
x 0 ≤ x ≤ L

2 ,

2k
L

(L− x) L
2 < x ≤ L.

(1)

(a) Sketch the graph of f(x) on [-2L,2L].

(b) Sketch f*, the even periodically extended version of f, on [-2L,2L].

(c) Calculate the Fourier series of f∗. That is calculate the Fourier cosine half-range expansion of f .
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We begin with the coefficient a0 and not hing that this is nothing more than the area under the curve f(x) we find,

a0 =
1

2L

∫ L

−L
f∗(x)dx (2)

=
1
L

∫ L

0

f(x)dx (3)

=
1
L
· 1

2
Lk (4)

=
k

2
(5)

Next we have an. Some symmetry, integration by parts and algebra gives,

an =
1
L

∫ L

−L
f∗(x) cos

(nπ
L
x
)
dx (6)

=
2
L

∫ L

0

f(x) cos
(nπ
L
x
)
dx (7)

=
2
L

[
2k
L

∫ L
2

0

x cos
(nπ
L
x
)
dx+

2k
L

∫ L

L
2

(L− x) cos
(nπ
L
x
)
dx

]
(8)

=
4k
L2

[
L

nπ
sin
(nπ
L
x
)∣∣∣∣L

2

0

+
L2

n2π2
cos
(nπ
L
x
)∣∣∣∣L

2

0

+
L

nπ
(L− x) sin

(nπ
L
x
)∣∣∣∣L

L
2

− L2

n2π2
cos
(nπ
L
x
)∣∣∣∣L

L
2

]
(9)

=
4k
L2

[
L2

2nπ
sin
(nπ

2
x
)

+
L2

n2π2
cos
(nπ

2
x
)
− L2

n2π2
− L2

2nπ
sin
(nπ

2
x
)
− L2

n2π2
(−1)n +

L2

n2π2
cos
(nπ

2
x
)]

(10)

=
4k
n2π2

[
2 cos

(nπ
2
x
)
− (−1)n − 1

]
(11)

Further simplifications can be made. If we note the following pattern,

n = 1 ⇒ a1 = 0, (12)

n = 2 ⇒ a2 = − 16k
22n2

, (13)

n = 3 ⇒ a3 = 0, (14)

n = 4 ⇒ a4 = 0, (15)

n = 5 ⇒ a5 = 0, (16)

n = 6 ⇒ a6 = −−16k
62n2

, (17)

we can write the Fourier cosine series as,

f(x) =
k

2
+
∞∑
n=1

4k
n2π2

[
2 cos

(nπ
2
x
)
− (−1)n − 1

]
cos
(nπ
L
x
)

(18)

=
k

2
− 16k

π2

(
1
22

cos
(

2π
L
x

)
+

1
62

cos
(

6π
L
x

)
+ · · ·

)
(19)

2. (a) Show that
∫ π
−π e

inxe−imxdx = 2πδmn where m,n ∈ R.

For n 6= m

∫ π

−π
einxe−imxdx =

∫ π

−π
e(n−m)ixdx =

e(n−m)ix

i(n−m)

∣∣∣∣π
−π

=

=
(−1)(n−m)

i(n−m)
− (−1)(n−m)

i(n−m)
= 0

For n = m

∫ π

−π
einxe−imxdx =

∫ π

−π
e(n−m)ixdx =

∫ π

−π
1dx = x|π−π = 2π

=
∫ π

−π
einxe−imxdx =

{
0 n 6= m

2π n = m
= 2πδnm
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(b) Find the Fourier Coefficients of f(x) =
∑∞
n=−∞ cne

inx

f(x) =
∞∑

n=−∞
cne

inx

⇒ f(x)e−imx =
∞∑

n=−∞
cne

inxe−imx

⇒
∫ ∞
−∞

f(x)e−imxdx =
∞∑

n=−∞

∫ π

−π
cne

(n−m)xdx

As we found in (a), the integral on the right is 0 for all values of n except n=m

⇒
∫ π

−π
f(x)e−imxdx = cm2π

⇒ 1
2π

∫ π

−π
f(x)e−imxdx = cm

cn =
1

2π

∫ π

−π
f(x)e−inxdx

Because m=n we can replace our m’s with n’s to get the formula for cn

3. Let f(x) = x2 −π < x < π be 2π periodic.

(a) Calculate the complex Fourier Series representation of f(x).

f(x) =
∞∑

n=−∞
cne

inx

cn =
1

2π

∫ π

−π
f(x)e−inxdx =

1
2π

∫ π

−π
x2e−inxdx

=
1

2π

[
−x2

in
e−inx +

2x
n2
e−inx +

2
in3

e−inx
]π
−π

=
1

2π

[(
−x2

in
+

2x
n2

+
2
in3

)
e−inx

]π
−π

=
1

2π

[(
−π2

in
+

2π
n2

+
2
in3

+
π2

in
+

2π
n2
− 2
in3

)
(−1)n

]
=

1
2π

[
4π
n2

(−1)n
]

=
2π
n2

(−1)n n 6= 0

For n = 0

c0 =
1

2π

∫ π

−π
x2ei(0)xdx =

1
2π

∫ π

−π
x2dx =

1
2π

[
1
3
x2

]π
−π

=

=
π2

3

f(x) =
π2

3
+

∞∑
n=−∞,n6=0

2π
n2

(−1)neinx
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(b) Using (a), recover the real Fourier series representation of f(x).

f(x) =
π2

3
+

∞∑
n=−∞,n6=0

2π
n2

(−1)neinx

=
π2

3
+

−1∑
n=−∞

2π
n2

(−1)neinx +
∞∑
1

2π
n2

(−1)neinx

Substituting n=-n into the first series we get:

=
π2

3
+
∞∑
n=1

2π
n2

(−1)ne−inx +
∞∑
1

2π
n2

(−1)neinx

=
π2

3
+
∞∑
1

2π
n2

(−1)n
(
e−inx + einx

)
Using Euler’s Formula:

=
π2

3
+
∞∑
1

2π
n2

(−1)n (cos(nx)− isin(nx) + cos(nx) + sin(nx))

The Real Fourier Series Representation:

f(x) =
π2

3
+
∞∑
n=1

4π
n2

(−1)ncos(nx)

4. (a) How is the Fourier transform related to Fourier Series? You should discuss both the periodicity and number of Fourier
modes used in the construction of each.

Fourier transforms and Fourier series are the same in that they take a function and represent it as the sum of
oscillatory functions multiplied by amplitudes of oscillations. However, they differ by the number of Fourier
modes (terms in the summations) used. In the case of Fourier series there are countably infinite number of
oscillatory functions which depend on a countably infinite frequency spectrum and these modes are used to
construct periodic functions. In the case of Fourier transforms the spectrum must be continuous and thus
there are uncountably infinite modes depending on a continuum of frequencies.

(b) What does cross-correlation measure? What would auto-correlation measure?

Correlation is a measure of similarity between two functions. This measure is given in terms of a convolution
integral. If cross-correlation is the measure of similarity between two functions then auto-correlation is a
measure between the function and itself.

(c) What is the uncertainty principle as it relates to Fourier transforms? How much power would be required to send a
signal like δ(t)?

The uncertainty principle for Fourier transforms says that if a function is localized in one domain then it is
de-localized in the transformed domain. One can interpret this physically as saying if you know very well the
spread of the function in one space then you know very little about the spread in another space. These two
spaces are typically position-momentum or time-frequency. Using this idea one can show that the Fourier
transform of a delta function is a constant function and the power of the signal is the area under the square
of this constant function, which is infinite. Therefore you would need an infinite amount of power to send a
single impulse of signal.

5.

f(x) = 1√
2

∫∞
−∞ f̂(w)eiwxdw (20)

f̂(w) = 1√
2

∫∞
−∞ f(x)e−iwxdx (21)

fc(x) =
√

2
π

∫∞
0
f̂(w)cos(wx)dw f̂c(w) =

√
2
π

∫∞
0
f(x)cos(wx)dx (22)

fs(x) =
√

2
π

∫∞
0
f̂(w)sin(wx)dw f̂s(w) =

√
2
π

∫∞
0
f(x)sin(wx)dx (23)
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(a) Show that fc(x) and f̂c(w) are even functions and fs(x) and f̂s(w) are odd functions.
In fc(x), cos(wx) is the only function of x, so that fc(−x)=fc(x), the definition of an even funtion. Similarly,
f̂c(−w)=f̂c(w).
In fs(x), sin(wx) is the only function of x, so that fs(−x)=−fs(x), the definition of an odd function. Similarly,
f̂s(−w)=−f̂s(w).

(b) Show that, if we assume f(x) is even, (1)-(2) defines the transform pair (3) and if we assume f(x) is odd, (1)-(2) defines
the transform pair (4).
Using Euler’s Formula, (2) becomes

f̂(w) =
1√
2π

∫ ∞
−∞

f(x)(cos(wx)− isin(wx))dx

f̂(w) =
1√
2π

∫ ∞
−∞

f(x)cos(wx)dx− i√
2π

∫ ∞
−∞

f(x)sin(wx)dx

If we assume f(x) is even, the imaginary part is an odd function integrated over symetric bounds, which becomes zero
and f̂(w) = f̂c(w).
Because f̂(w) = f̂c(w), which is even, the same argument can be used to show that f(x) = fc(x).
If we assume f(x) is odd

f̂(w) =
1√
2π

∫ ∞
−∞

f(x)e−iwxdx

f̂(w) =
1√
2π

∫ ∞
−∞

f(x)cos(wx)dx− i√
2π

∫ ∞
−∞

f(x)sin(wx)dx

Becuase f(x) is odd, the real part becomes an odd function integrated over symetric bounds which becomes zero and
f̂(w) = f̂s(w).
Becuase f̂(w) = f̂s(w), which is odd, the same argument can be used to show that f(x) = fs(x).

(c)

f(x) =

{
A 0 < x < a

0 otherwise
A, a ∈ R+ (24)

Plot the even and odd extensions of f(x).
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(d) Find the Fourier Cosine and Sine transforms of f(x).

f̂c(w) =

√
2
π

∫ ∞
0

f(x)cos(wx)dx

=

√
2
π

∫ a

0

A · cos(wx)dx =

√
2
π

[
A

w
sin(wx)

]a
0

f̂c(w) =

√
2
π

(
A · sin(aw)

w

)
f̂s(w) =

√
2
π

∫ ∞
0

f(x)sin(wx)dx

=

√
2
π

∫ a

0

A · sin(wx)dx =

√
2
π

[
−A
w
cos(wx)

]a
0

f̂s(w) = −
√

2
π

(
A(cos(aw)− 1)

w

)

(e) Using the Fourier Cosine transform, show that
∫∞
−∞

sin(wπ)
wπ dw = 1.

From (d) we have that if f(x) =

{
A 0 < x < a

0 otherwise

f̂c(w) =

√
2
π

(
A · sin(wa)

w

)
If we take the inverse transform

F−1
{
f̂c(w)

}
= f(x) =

√
2
π

∫ ∞
0

[√
2
π

(
A · sin(aw)

w

)]
cos(wx)dw

Evaluating f(x) at 0

f(0) =
2
π

∫ ∞
0

A · sin(wa)
w

dw = A

Because A·sin(wa)
w is an even function,

2
π

∫ ∞
0

A · sin(wa)
w

dw =
1
π

∫ ∞
−∞

A · sin(wa)
w

dw = A

If we choose A=1 and a = π,
∫∞
−∞

sin(wπ)
wπ dw = 1
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