MATH 225 - Differential Equations
Homework 9, Field 2008

Today in class we studied the nonlinear system of differential equations,

$$
\begin{align*}
& \frac{d x}{d t}=x(10-x-y) \tag{1}\\
& \frac{d y}{d t}=y(30-2 x-y) \tag{2}
\end{align*}
$$

and found out that there existed four equilibrium points and that the two-species physical solutions (solutions in the first quadrant of phase space) tended to the a real sink at $(x, y)=(0,30)$. We say that this competition is unstable in the sense that in competitive situations all x trajectories tend to zero as t goes to infinity.
Suppose now that we have the following system of differential equations,

$$
\begin{align*}
\frac{d x}{d t} & =x(2-2 x-y) \tag{3}\\
\frac{d y}{d t} & =y(2-x-2 y) \tag{4}
\end{align*}
$$

where $x, y \in[0, \infty)$, which models competition in two species x and y.

1. Find all fixed points of the system.
2. Using the Jacobian matrix classify these fixed points.
3. Do a full eigenvalue/eigenvector decomposition of the off-axis equilibrium and using this approximate solution discuss the local behavior of the system in a neighborhood of this equilibrium.
4. Using HPGSystemSolver plot the slope field in the first quadrant and plot enough trajectories to give a qualitative description of the time-dynamics of the populations. Is the system stable in the sense that there exists an equilibrium population such that both x and y are nonzero?
5. Using HPGSystemSolver plot the slope field of the system of differential equations,

$$
\begin{align*}
& \frac{d x}{d t}=x(2-x-2 y) \tag{5}\\
& \frac{d y}{d t}=y(2-2 x-y) \tag{6}
\end{align*}
$$

where $x, y \in[0, \infty)$, which models competition in two species x and y. Compare the time dynamics of this model to the model (3)-(4) and discuss the differences in stability.

