
0.1.2 The second law of thermodynamics

Now that we have seen the importance of probability in determining the
equilibrium macrostates of macroscopic systems, we can give that the status
of a law—the second law of thermodynamics. The usual statements of the
law are expressed in terms of entropy, rather than multiplicity. Here is the
way Gibbs stated it:

The general criterion for equilibrium can be stated simply
and precisely: for the equilibrium of any isolated system, it is
necessary and sufficient that, in all possible variations of the
state of the system which do not alter its energy, the variation
of its entropy shall either vanish or be negative.

This is precisely the kind of situation we have encountered in considering
the equilibrium state of a pair of any of our toy systems placed in thermal
contact with each other, but isolated from everything else. The initial
state of the combined system, prior to establishing the thermal contact,
was constrained in such a way that one of the subsystems had more than
its fair share of the energy. When the subsystems were placed in thermal
contact, we found that the entropy (multiplicity) of the initial macrostate,
characterized by the energy of one of the subsystems, was smaller than
that of other macrostates having a more even distribution of energy. Thus,
probability alone leads to the ultimate establishment of an equilibrium state
with the entropy maximized over the set of all possible values of the energy
characterizing the macrostates.

Gibbs’s statement generalizes that to any kind of variation one might
make between the subparts of a system, particle density, volume, electric
charge, or whatever. That is, when entropy (or multiplicity) is expressed
as a function of some parameter characterizing possible macrostates of an
isolated system, the equilibrium state is the one that maximizes the entropy
over the set of possible values of that parameter.

HW Problem. Schroeder problem 2.30, p. 77.

0.1.3 The entropy of the ideal gas

HW Problem. Schroeder problem 2.34, p. 79.

HW Problem. Schroeder problem 2.35, p. 79.

Recall that the multiplicity of the ideal gas is

Ω =
εp

(2mU)1/2

V N (2πmU)3N/2

N !h3N

2
Γ
(

3N
2

) . (20)

Since Γ(3N/2) = [(3N/2) − 1]!, the third fraction can be written in the
alternative form:

2
Γ
(

3N
2

) =
3N(
3N
2

)
!
. (21)
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Also, we’ll move the N ! from the second fraction to the third one, to

keep the factorials together. Then it’s a straightforward matter to calculate
its entropy S = k lnΩ. We’ll start by taking the logarithm:

lnΩ = ln
[

εp

(2mU)1/2

]
+ N ln

[
V (2πmU)3/2

h3

]
+ ln

[
3N

N !
(

3N
2

)
!

]
. (22)

The first term is just the logarithm of the ratio of the thickness of the thin
shell in 3N -dimensional momentum space to its radius, a small number
compared to the second term, which is proportional to N . So we’ll drop
the first term. We can use Stirling’s approximation to approximate the
logarithm in the third term:

ln
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)
!

]
≈ ln(3N)−N lnN + N − 3N
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2
. (23)

All the terms are proportional to N except the first, so we’ll drop the first
term. Then we’re left with
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(24)

Putting this back into the entropy, we have

S = k lnΩ

= Nk

{
ln

[
V

N

(
4πmU

3h2N

)3/2
]

+
5
2

}
.

(25)

This is a famous equation, called the Sackur-Tetrode equation.
There are a couple of important things to notice about this entropy.

First, it expresses S as a function of three macroscopic variables character-
izing the equilibrium state of the system, U , V , and N . Second, all three
of these variables are proportional to the size of the system, and the over-
all factor of N makes it clear that S is as well. Such variables are called
extensive variables, and they play an important role in all thermodynamic
systems, not just the ideal gas. Finally, U and V appear only as ratios with
N , so the dependence of S on U and V reduces to a dependence on the
energy per particle U/N and the volume per particle V/N .

It’s also important to notice that S, like U , V , and N is a state variable.
Its value depends only on the state, not on the path taken from some other
state. This is obvious from the statistical definition of the entropy, since
the number of microstates corresponding to a given macrostate depends
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only on the state, not on how it was produced. But it is also evident from
the Sackur-Tetrode equation, which shows that the entropy of an ideal gas
depends only on state variables, constants, and the particle mass.

Thus we see three obvious ways to increase the entropy of an ideal gas:

• Increase the number of particles. The N dependence isn’t trivial,
but the overall factor of N dominates the inverse dependences inside
the logarithm. If the particles are added with fixed U/N and V/N ,
rather than with fixed U and V , then S changes in direct proportion to
N . One expects, based on the behavior of multiplicities of combined
systems, which are the products of the multiplicities of the individual
systems, that S should be additive for the equilibrium state, and this
demonstrates that for the ideal gas.

• Increase the energy per particle. For an ideal gas, recall that the total
energy is

U =
f

2
NkT , (26)

f being the number of degrees of freedom per particle, so the energy
per particle is directly proportional to the temperature. Increasing
the temperature increases U/N , hence it increases the entropy.

• Increase the volume per particle. Remember that when we quantized
the ideal gas by putting it in a box of volume V = L3, we found
the possible single-particle states to lie on points in a cubic lattice
in momentum space, with the momentum-space volume per point
being h3/V . Increasing the volume increases the density of the points
representing possible states, so it increases the number of microstates
having the fixed total energy of the system. Hence it increases the
entropy.

Example. Now that we have an expression for the entropy of an ideal
gas, let’s try it out to find the equilibrium state of a pair of ideal gases in
thermal contact. We’ll suppose the systems have entropy functions

S1(U1, V1, N1) and S2(U2, V2, N2) , (27)

but we’ll fix the volumes and particle numbers. We’ll also fix the total
energy of the combined system:

U = U1 + U2 = constant . (28)

Then the total entropy of the combined system can be expressed as a func-
tion of U1 alone (or U2):

S(U1) = S1(U1) + S2(U2) = S1(U1) + S2(U − U1) . (29)
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In equilibrium the entropy is maximized with respect to changes in U1,
so its derivative with respect to U1 must vanish:

dS

dU1
= 0 ⇒

(
∂S1

∂U1

)
V1,N1

+
(

∂S2

∂U2

)
V2,N2

dU2

dU1︸︷︷︸
−1

= 0 . (30)

The condition for equilibrium of the systems is then just(
∂S1

∂U1

)
V1,N1

=
(

∂S2
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)
V2,N2

. (31)

For the ideal gas, we can evaluate the derivative:(
∂S

∂U

)
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= Nk
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N
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U
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(32)

But the equipartition theorem gives the energy in term of the temperature:

U =
3
2
NkT , (33)

which means the derivative of S reduces to(
∂S

∂U

)
V,N

=
1
T

. (34)

Thus, the condition for equilibrium of two ideal gases in thermal contact is
simply:

1
T1

=
1
T2

or T1 = T2 , (35)

which is a direct consequence of the maximization of the entropy. This
agrees with a more general, but unsubstantiated, claim I made on the first
day.

0.1.4 Entropy of mixing

We’ve seen that the entropy of an ideal gas can be increased by increasing
the number of particles, the volume per particle, or the energy per particle,
which is proportional to the temperature. But there’s also a curious increase
in entropy that arises from mixing of two different ideal gases. The same
phenomenon occurs in liquids and solids, but our expression for the entropy
of an ideal gas gives us a nice opportunity to see the effect in action in a
specific system.
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First, let’s note that it’s not surprising that mixing should increase
the entropy, if we think of entropy as a measure of disorder—the mixed
gases constitute a more disordered state than the separated gases. As well,
we expect that there are many more mixed microstates of the gases than
separated microstates, so the entropy must be greater in the mixed state.
Still, there is a bit of a puzzle associated with the phenomenon, as we’ll see
shortly.

We can understand mixing of different ideal gases by considering the
volume dependence of the entropy. Suppose a container is partitioned into
two equal subvolumes, and the two sides are filled with equal numbers of
neon and argon atoms, one type on each side. In thermal equilibrium, both
gases have equal total energies, as well as volumes, and numbers of particles,
so their entropies are equal. Removal of the partition permits both gases to
occupy twice the volume they occupied originally, even though the volume
per particle of any type remains the same.

The volume dependence of the entropy is expressed by the partial deriva-
tive of the Sackur-Tetrode entropy with respect to volume:(

∂S

∂V

)
U,N

=
NK

V
, (36)

so the finite change in entropy acoompanying a finite change in volume is

∆S =
∫ Vf

Vi

(
∂S

∂V

)
U,N

dV

= Nk

∫ Vf

Vi

1
V

dV

= Nk ln
Vf

Vi
.

(37)

Each of the two gases experiences this change in entropy upon mixing, and
with Vf = 2Vi, the total change in entropy is

∆S = 2Nk ln 2 . (38)

Now, why should this bother us? It shouldn’t really, but historically
it was considered puzzling because if the gases are identical, there cannot
be any change in entropy, since the entropy of the combined system before
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and after the partition is removed is

S = S1 + S2

= N1k
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(39)

where U1 = U2 = U/2, V1 = V2 = V/2, and N1 = N2 = N/2 assures the
final equality. One could imagine making the atoms of the gas more and
more alike, say by using different isotopes of a single atomic type, with
smaller and smaller differences in atomic mass, yet as long as the atoms
were different in any way, no matter how small, the entropy change would
be 2Nk ln 2. And if they were absolutely identical, the entropy change
would suddenly and completely vanish.

The reason for the different behaviors is the 1/N ! we had to introduce in
the calculation of the multiplicity of the macrostate of energy U . That was
required because of the indistinguishability of the particles, which forced
identification of any of the N ! states with the particles permuted as the
same microstate. Its consequences in the Sackur-Tetrode entropy are the
N appearing in V/N and the constant term being 5/2 rather than 3/2. The
first of those is required for the entropy sum for separated identical ideal
gases to be the same as the entropy of the combined gas.

HW Problem. Schroeder problem 2.36, p. 79.

HW Problem. Schroeder problem 2.37, p. 81.

HW Problem. Schroeder problem 2.42, pp. 83–84.
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