```
http://ticc.mines.edu/
```

Text	E. Kreyszig, Advanced Engineering Mathematics, $9^{\text {th }}$ edition, Wiley, New York, 2006
Course Description	Introduction to partial differential equations, with applications to physical phenomena. Fourier series, Linear Algebra with emphasis on sets of simultaneous equations. Prerequisite: MATH225 or equivalent.
Sections	A : 11:00am-12:20pm Location: Green Center 249
Instructor Info	Instructor: Scott Strong Phone: 303.384 .2446 Office: Chauvenet Hall 266 Email: math348@gmail.com Office Hours: MTWR 12:30pm-1:30pm
Grading	Exams (2 @ 25\% each): 50% $90-100 \%$ A Final Exam: 30% $80-89 \%$ B Discretionary: 20% $70-79 \%$ C Total: 100% $60-69 \%$ D Below 60% F
Important Dates	First Day of Class June 28 Independence Day (No Classes) July 5 Last Day to Drop Without a W July 6 Last Day to Withdraw August 6 Last Day of Class August 19
Academic Honor Code	I pledge to uphold the high standards of academic ethics and integrity expressed by the Colorado School of Mines Student Honor Code by which I am bound. In particular, 'I will not misrepresent the work of others as my own, nor will I give or receive unauthorized assistance in the performance of academic coursework.' I understand that my instructor will report any infraction of academic integrity to the Department Head and that any such matter will be investigated and prosecuted fully.

MATH348-Summer2010 - Tentative Schedule ${ }^{1}$

Section	Pages	Key Concepts
7.1, 7.2	272-286	Algebra, Associativity, Commutativity, Distribution, Inner-Product, Outer-Product, Matrix Product, Symmetric, Skew-Symmetric
7.3,7.5	$\begin{aligned} & 287-295, \quad 302- \\ & 305 \end{aligned}$	Linear System, Existence and Uniqueness, Gauss Elimination, Row Echelon Form, Fundamental Theorem for Linear Systems, Homogeneous and Nonhomogeneous systems.
7.7-7.8	308-314	Determinant, Cramer's Theorem, Matrix Inverse, Orthogonal Matrix
7.4, 7.9	$\begin{array}{ll} \hline 296-301, \quad 323- \\ 329 \end{array}$	Linear Dependence, Basis, Dimension, Rank, Span, Row Space, Column Space, Null Space, Vector Space, Inner Product Space
8.1	334-339	Eigenvalue, Spectra, Eigenvector, Eigenfunction
8.3	345-348	Symmetric, Skew-Symmetric, Orthogonal, Transformations, Spectra
8.4	349-355	Eigenbasis, Diagonalization, Quadratic Form, Definiteness
Review of Functions	N/A	Function, Even, Odd, Periodic Function, Trigonometric Function, Factorial Function, Gamma Function, Gaussian Function
11.1, 11.3	$\begin{array}{\|l\|} \hline 478-486, \quad 490- \\ 495 \end{array}$	Fourier Series, Fourier Coefficients, Fourier Series of Functions with Symmetry
11.2	487-489	Domain Scaling Properties
11.4	496-498	Euler's Formula, Complex Fourier Series
11.6	502-505	Trigonometric Approximation, Parseval's Identity, Harmonic Series
11.7-11.8	506-517	Fourier Integral, Fourier Sine/Cosine Transform
11.9	518-528	Fourier Transform, time/space domain, frequency/momentum domain, Uncertainty Relations, Sampling Theorem, Convolution, Green's function, Frequency Response, Parseval's Identityf
Review of DE, 12.1	535-537	Linear $2^{\text {nd }}$-order ODE's, Simple Harmonic Oscillators, Boundary Value Problems, Bessel's Equation
Flows and Conservations Laws	N/A	Divergence Theorem, Conservation Equation, Constitutive Equation, Fourier's Law of Heat Conduction
12.5	552-561	Boundary Conditions, Separation of Variables, Periodic Extension
Inhomogeneity	N/A	Extension of Fourier Methods
12.2-12.4	538-551	Ideal Wave Equation, Vibrations, D'Alebert's Solution
12.6	562-568	Cauchy-Problem, Heat Kernel
12.9	579-586	Multivariate Chain Rule, Laplacian in Polar Coordinates, Fourier-Bessel Series
12.10	587-593	Cylindrical and Spherical Geometries
12.11	594-596	Laplace Transforms and PDE's
Acoustics	N/A	Linear Approximations and Small Amplitude Vibrations

[^0]
[^0]: ${ }^{1}$ A listing of recommended problems from the text will be given in the header box of each 'lecture slide' posted on the ticc website.

