1.5 Existence and Uniqueness Theorems

Existence Theorem: Suppose $f(t, y)$ is a continuous function in a rectangle of the form $\{(t, y) \mid a<t<b, c<y<d\}$ in the $t y$-plane. If (t_{0}, y_{0}) is a point in this rectangle, then there exists an $\epsilon>0$ and a function $y(t)$ defined for $t_{0}-\epsilon<t<t_{0}+\epsilon$ that solves the initial-value problem:
$\frac{d y}{d t}=f(t, y)$,
$y\left(t_{0}\right)=y_{0}$.
Uniqueness Theorem: Suppose $f(t, y)$ and $\frac{\partial f}{\partial y}$ are continuous functions in a rectangle of the form $\{(t, y) \mid a<t<b, c<y<d\}$ in the $t y$-plane. If (t_{0}, y_{0}) is a point in this rectangle and if $y_{1}(t)$ and $y_{2}(t)$ are two functions that solve the initial-value problem:
$\frac{d y}{d t}=f(t, y), \quad y\left(t_{0}\right)=y_{0}$
for all t in the interval $t_{0}-\epsilon<t<t_{0}+\epsilon$ (ϵ is a positive number), then
$y_{1}(t)=y_{2}(t)$
for $t_{0}-\epsilon<t<t_{0}+\epsilon$. That is the solution to the initial-value problem is unique.

