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obtain the width Ax({) at time ¢:

Ax(f)=/(Axo)*+ (;’—;:)2 (7.102)

We note that (7.102) agrees exactly with (7.99) if we put Axo= L. The expression
(7.102) for Ax(t) shows the general result that, if ©"#0, a narrow pulse spreads
rapidly because of its broad spectrum of wave numbers, and vice versa. All these
ideas carry over immediately into wave mechanics. They form the basis of the
Heisenberg uncertainty principle. In wave mechanics, the frequency is identified
with energy divided by Planck’s constant, while wave number is momentam
divided by Planck’s constant. '

The problem of wave packets in a dissipative, as well ag dispersive, medium is
rather complicated. Certain aspects can be discussed analytically, but the
analytical expressions are not readily interpreted physically. Wave packets are
attenuated and distorted appreciably as they propagate. The reader may refer to
Stratton pp. 301-309, for a discussion of the problem, including numerical
examples. , ‘

7.10 Causality in the Connection Between D and E, Kramers-Kronig
Relations

{a) Nonlocality in Time

Another consequence of the frequency dependence of e{w) is a temporally
nonlocal connection between the displacement Dix, t) and the electric field
E(x, f). If the monochromatic components of frequency o are related by

D{x, w)=e{w)E(X, w) (7.103)

the dependence on time can be constructed by Fourier superposition. Treating
the spatial coordinate as a parameter, the Fourier integrals in time and
frequency can be writien '

D(x, t)=T;_; _[ Dix, o)e=™ do

1 J‘m eut”
—==| . D{x,t dr’
Ve2mda (x, £)e

with chresponding equations for E. The substitution of (7.103) for D{x, w) gives

(7.104)
Dix, w)=

Dix, 8) =7~;—; r () E(x, o)™ do
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We now insert the Fourier representation of E(x, w) into the integral and obtain
Dix, =5 [ do e(we™ f dt' ¢*E(x, 1)

With the assumption that the orders of integration can be interchanged, the last
expression can be written as

D(x, 1) = E(x, )+ E G(DE(x, t—1) dr (7.105)

where G(7) is the Fourier transform of ‘41'rx,=e(w)—1:
G(f)=%r- f Le(w)—1]e™ do (7.106)

Equation (7.105) and (7.106) give a nonlocal connection between D and E, in
which D at time ¢ depends on the electric field at times other than t.* If e(w) is
independent of o for all w, (7.106) yields G{7) < 8(7) and the instantaneous
connection is obtained, but if e(w) varies with w, G(1) is nonvanishing for some
values of r different from zero.: :

(B) Simple Model for G(7), Limitations
To illustrate the character of the connection implied by (7.105) and (7.106) we
consider a one-resonance versjon of the index of refraction (7.51):

€(w)—1=w, (wy*~ w’—iya) ™ (7.107)
The susceptibility kernel G(r) for this model of e(w) is

—ir

2 =
Gln)=5= f i wﬂ——_——m——zfmz_iw de (7.108)

The integral can be evaluated by contour integration. The integrand has poles in
the lower half » plane at :

- 2
wi=~Tin,,  where 7o' =aw’-1- (7.109)

i . corivelyhian
* Equations (7.103) and (7.105} are recognizable as an example of the faltung
theorem of Fourier integrals: if AlD), B(t), C(f) and alw), blw), c{e) are two sets of
functions related in pairs by the Fourier inversion formulas (7.104), and

c(w)=a(w)biw)

then, under snitable restrictions concetning integrability,

N oy s
o= L A(YB{t—1) dt
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For 7<0 the contour can be closed in the upper half plane without affecting the
value of the integral. Since the integrand is regular inside the closed contour the
integral vanishes. For r>0, the contour is closed in the lower half-plane and the
integral is given by —2i times the residues at the two poles. The kernel (7.108)
is therefore

Glr)=w,’ e T2 () (7.110)
n

where 8(7) is the step function [8(r}=0 for v<0; 8(r)=1 for +>0). For the
dielectric constant (7.51) the kernel G(r) is just a linear superposition of terms
like (7.110). The kernel G(r) is oscillatory with the characteristic frequency of
the medium and damped in time with the damping constant of the electronic
oscillators. The nonlocality in time of the connection between I and E is thus
confined to times of the order of ™. Since vy is the width in frequency of spectral
lines and these arc typically 10~10" sec™, the departure from simultaneity is of
the order of 107°-107° sec. For frequencies above the microwave region many
cycles of the electric field oscillations contribute an average weighed by G{7) to
the displacement D at a given instant of time.

Equation (7.105) is nonlocal in time, but not in space. This approximation is
valid provided the spatial variation of the applied fields has a scale that is large
compared with the dimensions involved in the creation of the atomic or
molecular polarization. For bound charges the latter scale is of the order of
atomic dimensions or less, and so the concept of a dielectric constant that is a
function only of @ can be expected to hold for frequencies well beyond the
visible range. For conductors, however, the presence of free charges with
macroscopic mean free paths makes the assumption of a simple e(w) or a(w)
break down at much lower frequencies. For a good conductot like copper we
bave seen that the damping constant (corresponding to a collision frequency) is
of the order of yo~3%x10"sec™ at room temperature. At liquid helium
temperatures, the damping constant may be 107> times the room temperature
value. Taking the Bohr velocity in hydrogen {(c/137) as typical of electron
velocities in metals, we find mean free paths of the order of L~e/(137 o)~
107 cm at liguid helium temperatures. On the other hand, the conventional skin
depth 8 (7.77) can be much smaller, of the order of 10° or 107 ¢m at microwave
frequencies. In such circumstances, Ohm’s law must be replaced by a nonlocal
expression. The conductivity becomes a tensorial quantity depending on wave
number k and frequency w. The associated departures from the standard
behavior are known collectively as the anomalous skin effect. They can be
utilized to map out the Fermi surfaces in metals.* Similar nonlocal effects occur

* A. B. Pippard, in Reports on Progress ir Physics 33, 176 (1960), and the article
entitled ““The Dynamics of Conduction Electrons,” by the same author in Low-
Temperature Physics, Les Houches 1961, eds., C. de Witt, B. Dreyfus, and P. G. de
Gennes, Gordon and Breach, New York (1962). The lattet article has been issued
separately by the same pubiisher.
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in superconductors where the electromagnetic properties involve a coherence
length of the order of 10~ cm.* With this brief mention of the limitations of
{7.105) and the areas where generalizations have been fruitful we return to the
discussion of the physical content of (7.105).

(¢) Causality and Analyticity Domain of e(w)

The most obvious and fundamental feature of the kernel (7.110) is that it
vanishes for 7<0. This means that at time £ only values of the electric field prior to
that time enter in determining the displacement, in accord with our fundamental
ideas of causality in physical phenomena. Equation (7.105) can thus be written

D, =E(x, O+ .[:G(r)E(x, {—1) dr (7.111)

This is, in fact, the most general spatially local, linear, and causal relation that
can be written between D and E in a uniform isotropic medium. Its validity

transcends any specific modei of e
be expressed in terms of G(r) as

e(w) = 1+LEG(1~)e'“" dr (7.112)

). From (7.106) the dielectric constant can

This relation has several interesting consequences. From the reality of D, E, and
therefore G(7) in (7.111) we can deduce from (7.112) that for complex o,

&(—w) = e* (™) (7.113)

Furthermore, if (7.112) is viewed as a representation of e(w) in the complex o
plane, it shows that e(w) is @n gnalytic function of  in the upper half plane,
provided G{r) is finite for all 7. On the real axis it is necessaty o invoke the
“physically reasonable™ requirement that G{(r)—0 as 1— 10 assure that e(w) i8
also analytic there. This is true for dielectrics, but not for conductors, where
G(+)—4wo as 7o and e(w) has a simple pole at @=0 (e—>idmraiw as w—0).
Apart, then, from a possible pole at o= 0, the dielectric constant e(w) is analytic
in w for Im w=0 as a direct result of the causal relation (7.111) between 1> and
E. These properties can be verified, of course, for the models discussed in
Sections 7.5(a) and 7.5(c).

The behavior of e(w)—1 for large w can be related to the behavior of G(7) at

small times. A Taylor series expansion of G in (7.112) leads to the asymptotic
series,

iG(0) G0
_iGO)_G©O), .

@« o¥

e(w)—1

* See, for example, the article “Superconductivity,” by M. Tinkham in the book,
Low Temperatire Physics, cited above.
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where the argument of G and its derivatives is 7=0". It is unphysical to have
G(07)=0, but G(0"}#0. Thus the first term in the series is absent, and e(w)—1
falls off at high frequencies as w7, just as was found in (7.59) for the oscillator
model. The asymptotic series shows, in fact, that the real and imaginary parts of
e{w)—1 behave for large real w as

Re [e(w)—1]=o($), Tm e(myzo%) (7.114)
These asymptotic forms depend only upon the possibility of a Taylor series
expansion of G(r) around r=0",

(d) Kramers ~Kronig Relations
The analyticity of e(w) in the upper half @ plane permits the use of Cauchy’s
theorem to relate the real and imaginary part of e{w) on the real axis. For any

point z inside a closed contour C in the upper half w plane, Cauchy’s theorem
gives ‘

e(z)= 1+5:;-I; P [i(_c_u%_;_l_] des’

The contour C is now chosen to consist of the real o axis and a great semicircle
at infinity in the upper half plane. From the asymptotic expansion just discussed
or the specific results of Section 7.5(d), we see that e—1 vanishes sufficiently
rapidly at infinity so that there is no contribution to the integral from the great
semicircle. Thus the Cauchy integral can be written

@)=1+51 f: [eCw)—17 ;

'~z

(7.115)

where z is now any point in the upper half plane and the integral is taken along
the real axis. Taking the limit as the complex frequency approaches the real axis
from above, we write z=w+ie in (7.115):

=11t [ [ef0)-1] , ,
E(m)—1+21ﬂ - mdw {7.116)
For real w the presence of the ie in the denominator js a mnemonic for the
distortion of the contour along the real axis by giving it a infinitesimal
semicircular detour below the point w'=w. The denominator can be written
formally as

1

o' —w—ig

=P(=1= )+ mis(e-w) (7.117)

where P means principal part. The delta function serves to pick up the
contribution from the small semicircle going in a positive sense halfway around
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the pole at == w. Use of (7.117) and a simple rearrangement turns {7.116) into

RN O g

The real and imaginary parts of this equation are

Re e(w) = 1+% PI I—IE,-E"M de’

NS () R 004

’ , (7.119)
tm e(w)=—1 p| [Reeled= gy

e o —w

These relations, or the ones recorded immediately below, are called Kramers-
Kronig relations ot dispersion relations. They were first derived by H. A.
Kramers (1927) and R. de L. Kronig (1926) independently. The symmetry
property (7.113) shows that Re ¢(w) is even in o, while Im e(w) is odd. The
integrals in (7.119) can thus be transformed to span only positive frequencies:

1.2 “w' Im el , ,
Re e(w) 1+'11'P,[1 o —wt dwo

g , (7.120)
20 Pj [Re fzsm ): 1] de’
n 0 w

Im efew}= -
In writing (7.119) and (7.120) we bave tacitly assumed that e(w) was regular at
o=0. For conductors the simple pole at w=0 can be exhibited separately with
little further complication.

The Kramer-Kronig relations are of very general validity, following from little
more than the assumption of the causal comnection (7.111) between the
polarization and the electric field. Empirical knowledge of Im e(w) from
-absorption studies allows the calculation of Re e(w) from the first equation in
(7.120). The connection between absorption and anomalous dispersion, shown
in Fig. 7.8, is contained in the relations. The presence of a very narrow

absorption line or band at w=wo can be approximated by taking

Im E(m’)zi% 8(c'— o)+ - -

where K is a constant and the dots indicated the other (smoothly varying)
contributions to Im e. The first equation in (7.120) then yields

- K
Re E(w)—€+moz—m2 (7.121)
for the behavior of Ree(w) near, but not exactly at, @=wo. The term €
represents the slowly varying part of Re e resulting from the more remote
contributions to Im e. The approximation (7.121) exhibits the rapid variation of
Re e(w) in the neighborhood of an absorption line, shown in Fig. 7.8 for lines of

v
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finite width. A more realistic description for Im & would lead to an expression for
Re e in complete accord with the behavior shown in Fig. 7.8. The demonstration
of this is left to the problems at the end of the chapter.

Relations of the general type (7.119) or (7.120) connecting the dispersive and
absorptive aspects of a process are extremely useful in all areas of physics. Their
widespread application stems from the very small number of physically well-
founded assumptions necessary for their derivation. References to their applica-
tion in particle physics, as well as solid-state physics, are given at the end of the
chapter. We end with mention of two sum rules obtainable from (7.120). It was
shown in Section 7.5(d), within the context of a specific model, that the dielectric
constant is given at high frequencies by (7.59). The form of (7.59) is, in fact,
quite general, as was shown at the end of part (¢). The plasma frequency can
therefore be defined by means of (7.59) as

o =lim{a’[1- ()]}

Provided the falloff of Im e(w) at high frequencies is given by (7.114), the first
. Kramers-Kronig relation yields a sum rule for .

'

w,f=%j o Im e(w) do (7.122)
1]

This relation is sometimes known as the sum rule for oscillator strenpths. It can
be shown to be equivalent to (7.52) for the dielectric constant (7.51), but is
obviously more general.

The second sum rule concerns the integral over the real part of e{w) and
follows from the second relation (7.120). With the assumption that [Re e(w)~
1]= -y’ /0™ +0(1/w™) for all ™ N, it is straightforward to show that for w> N

Im e(w) =ﬁ{~ %Lz-l- LN[RS e(w—1] dm'}-l—O(—o%)’

It was shown in part (c) that, excluding conductors and barring the unphysical
happening that G(0') # 0, Im e(w) behaves at large frequencies as >, It there-
fore follows that the expression in curly brackets must vanish. We are thus led to
a second sum rule,

1" w,?
EL Re e{w) dw = 1+ﬁ5 (7.123)

which, for N — o, states that the average value of Re e(w) over all frequencies is
equal to unity. For conductors, the plasma frequency sum rule (7.122) still holds,
but the second sum rule (sometimes called a superconvergence relation) has an
added term —2n*¢(0)/N, on the tight hand side (see Problem 7 .15). These
optical sum rules and several others are discussed by Altarelli et al.*

*M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, Phys, Reo. B6,
4502 (1972).
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