
Phys 462 Homework 3 

 

1)  a)  We introduced the quantity  ∮�� ∙ ������  in class recently (and possibly in intermediate E&M).  

Taken at face value, it’s not super familiar, but it can be re-represented as something we’ve dealt with 

before.  What is it, and how do you know?  

b)  If you’ve figured out (a), you can now write an equation of the form ∮�� ∙ ������ = (blah), where blah 

is a scalar quantity.  This equation is structurally identical to Ampere’s law.  Use this equation to 

figure out a vector potential describing an infinite solenoid with turn density n, current I, and radius a.  

Consider the vector potential both inside and outside the solenoid.  Note:  You do need to assume the 

expression for the solenoid’s magnetic field in order to use this technique to get A. 

c)  Double check that your vector potential generates the correct B-field inside and outside the 

solenoid.   

d)  Having a look back at what you’ve done, you should be able to convince yourself that A can’t be 

zero outside the solenoid, even though B is zero out there.  Is this bad?  

 

2)  (From Pollack and Stump 11.34)  This problem gives us a look at the actual mechanical effects of 

fields on particles, and shows us how to treat the general problem numerically (real problems almost 

always have numerical solutions).  One thing I like about it is that it shows how much you can solve 

for even in a very general case – for most of the problem, we never specify the potential exactly, but 

still manage to do quite a bit of work. 

Consider an electromagnetic wave with vector potential ���	�, �� = �̂��	 − ���.  (The scalar potential is 

0.)  The function ��	 − ��� approaches 0 as 	 → ±∞, so the electromagnetic field is a wave packet  

(that is, a wave localized in space).  Suppose the wave hits an electron (charge –e, mass m) initially at 

rest at the origin. 

a) Derive the equations of motion for the electron velocity components vx, vy, vz. 

b) Show that ����� = 0. 

c) Show that ����� = � ��� ��	 − ���, where x is the x position of the electron at time t.   

d) Show that �� �1 −  !
"#� =

�$
"�$# [��	 − ���]" 

e) Describe the trajectory of the electron, assuming the wave packet has a short length.  In particular, 

show that the electron will have a positive displacement in the x direction.   

f) Assume �� ≪ � and ��(� = )*+,$/.$.  Solve the differential equation for x(t) numerically and plot 

the result. (Let d be the unit of length, d/c the unit of time, and choose a relatively small value of the 

dimensionless constant *)/�/��.) 



g) Solve for y(t) and plot the trajectory in space.  For example, in Mathematica, solve simultaneously 

the coupled parametric equations for x(t) and y(t) using NDSolve and make the plot with 

ParametricPlot. 

 

Some clarifications/hints follow:  

We really don’t need to know anything about electromagnetic waves per se to do the problem, so 

don’t get hung up on that.  We just need to know about how to get fields from potentials and how 

fields affect charges. 

For parts c & d you have to be super careful with the difference between total and partial derivatives, 

and attend to the fact that � is a function of �	 − ���.  It’s tricky.  Fortunately, it’s a “show that” 

problem, so if you get stuck on c & d you can still do the rest.  I found it useful to define 0 = 	 − �� 
so as to write ��	 − ��� as ��0�.  That helped me keep track of all the multivariate chain rule stuff.  

Though I still had to write things out in almost embarrassing detail to get all the terms to show up 

right. 

For part f, it’s implied that ( = 	 − ��.  Also, “relatively small” is kind of vague.  Let’s say 

“relatively small” is 0.1.   

For f also note that if they say, for example, that d is a “unit” of length, that means d has unit value.  

Which is to say, it’s 1.  And if d is unit and d/c is unit, so must be c.  Really, we’re just trying to get 

rid of all the constants so we can zoom in on the qualitative behavior of the system. 

 

 

3)  (From Pollack and Stump 6.17) 

Consider an electric field line passing through a planar interface between two insulating media with 

dielectric constants 12 and 1".  Assume there is no free charge on the interface.  Let 32 and 3"  be the 

angles between the field line and the normal to the interface in the two regions.  Prove that 

12 cot 32 = 1" cot 3" 

Note that this problem is basically some practice with applying our boundary conditions in matter.  As 

part of your answer, include a diagram of the electric field lines in the two regions and the angles they 

make.  Specify which region has the larger κ, and make your diagram consistent with that.  The form 

of the equation we’re proving and the diagram you’re making should be very reminiscent of Snell’s 

law.  Coincidence?  We’ll find out when we do electromagnetic waves and derive Snell’s law from 

first principles. 

 


