

Title: Jul 13-5:38 PM (1 of 5)

Show that this a solution and solve for $B$ an $K$.

$$
\nu^{2} \vec{E}=\mu \in \frac{\partial^{2} \cdot \vec{E}}{\partial t^{2}}+\mu \sigma \delta \frac{\partial \vec{e}}{\partial t}
$$

$$
\text { Answer: } \check{\kappa}={\sqrt{\mu \epsilon \omega^{2}+i \mu \sigma_{c} \omega}}^{\gamma t}=k+i k
$$

$$
(k+i k)^{2}=\mu \in \omega^{2}+i \mu \sigma_{c} \omega
$$

$$
\left(k+i k k k^{2}\right)+2 i k k=\mu \in \omega^{2}+i \mu \sigma_{c} \omega
$$

$$
k^{2}-k^{2}=\mu \epsilon \omega^{2} ; 2 k k=\mu \sigma_{0} \omega
$$

b) Snow $\vec{a} \times \vec{b}=\mu \vec{E} \frac{\vec{\partial} \vec{E}}{b_{t}}$ for harmonic wanes

$$
\begin{aligned}
& \vec{J}_{f}=\sigma_{c} \vec{E}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{\nabla} \times\left[\vec{b}_{x} \vec{B}=\mu \sigma_{c} \vec{E}+\mu \varepsilon \frac{\partial \vec{E}}{\partial t}\right] \\
& \vec{\nabla} \times(\vec{\sigma} \times \vec{x})=\mu \sigma_{c} \vec{b} \times \vec{E}+\mu \epsilon \frac{\partial}{\partial t}(\vec{b} \times \bar{c}) \\
& \left.\nabla(\vec{b} \vec{b})-\nabla^{2 \vec{b}}=\mu \sigma_{c}\left(-\frac{\partial \vec{b}}{\partial t}\right)+\mu t \frac{\partial}{\partial t}\left(-\frac{\partial \vec{b}}{\partial t}\right)\right) \\
& \rightarrow \quad v^{2} \vec{B}=\mu \in \frac{\partial^{2} \vec{B}}{\partial t^{2}}+\mu \sigma_{c} \frac{\partial \vec{B}}{\partial{ }^{t}} \\
& \text { The solution to mas is } \\
& \hat{A}^{i \hat{k} x-i \omega t} ; \tilde{k}=k+i k
\end{aligned}
$$

The complex dielectric constant



Rather than $\hat{E}_{r}$, you will see literature quote $\sqrt{E_{s}}=\tilde{n}=n+i k$


If you formulate your problems as $f(\vec{r}) e^{-i \omega t}$ then these are in the top half of the complex plane; otherwise the bottom halt.

Let's cay we have an absorbing material wi l normally incident light on it Let's say it's very thick, $T=\phi$. How much energy is lost $=1-R$

$$
\begin{aligned}
& R=\frac{|1-\tilde{\beta}|^{2}}{1+\left.\tilde{\beta}\right|^{2}}=\frac{(1-\tilde{\beta})\left(1-\beta^{*}\right)}{(1+\tilde{\beta})\left(1+\tilde{\beta}^{*}\right)} \\
& \tilde{\beta}=\sqrt{\frac{\mu_{1} \epsilon_{2}}{\mu_{1} \xi_{1}}} \quad \tilde{\epsilon_{1}}=\epsilon_{1} \quad \mu_{1}=\mu_{2}=\mu_{0} \\
& \tilde{\beta}=\sqrt{\frac{\tilde{\epsilon}_{2}}{\epsilon_{1}}} ; \tilde{\beta}+\tilde{\beta}^{*}=2 \operatorname{Re}[\tilde{\beta}] \\
& R=\frac{1-\tilde{\beta}-\tilde{\beta}^{*}+\check{\beta} \tilde{\beta}^{*}}{1+\tilde{\beta}+\tilde{\beta}^{*}+\tilde{\beta} \tilde{\beta}^{*}}=\frac{1-2 \operatorname{Re}[\tilde{\beta}]+|\tilde{\beta}|^{2}}{1+2 \operatorname{Re}[\tilde{\beta}]+|\tilde{\beta}|^{2}} \\
& R=1-\frac{4 \operatorname{Re}[\tilde{\beta}]}{1+2 \operatorname{Re}[\tilde{\beta}]+|\tilde{\beta}|^{2}} \\
& \operatorname{Loss}=\frac{4 \operatorname{Re}[\tilde{\beta}]}{1+2 \operatorname{Re}[\tilde{\beta}]+\left.\tilde{\beta}^{*}\right|^{2}}
\end{aligned}
$$

Title: Jul 13-6:54 PM (4 of 5)


Title: Jul 13-7:22 PM (5 of 5)

