MATH-332: Linear Algebra

Vector Spaces

Section 4.3: Linearly Independent Sets, Bases

pgs. 237 - 245

Lasture: Degag of Victor Spaces	
	Lecture. Dases of vector spaces
Topics:	Linear Dependence Relation
	Basis/Spanning set
	Basis for $Nul\mathbf{A}$, $Col\mathbf{A}$
Problems	Prac: 1, 2, 3
	Prob: 3, 9, 13, 15, 21, 22, 26, 27

Section Goals

- Understand how the concept of linear independence can used to define a set of basis vectors that can be used to span a vector subspace.
- Using the spanning set theorem, develop a method that will find a basis for the null and column space of a matrix.

Section Objectives

- Define the basis of a subspace through the concepts of span and linear independence and define the 'standard basis' for \mathbb{R}^n .
- Provide an example of these concepts in terms of a second-order linear ordinary differential operator and the polynomial spaces.
- State the spanning set theorem, which characterizes bases as 'efficient' spanning sets, and using it construct bases for null and column spaces.

Chapter: 4

July 13, 2009