Conservation Laws, Source Terms, Diffusion in \mathbb{R}^{2+1}, Chain Rule, SL-Problems

Text: 12.8,12.9
Lecture Notes: N/A
Lecture Slides: N/A

Quote of Homework Five

And the feeling is that there's something wrong, 'cause I can't find the words, and I can't find the songs.

Radiohead : Stop Whispering (1993)

1. Conservation Laws in One-Dimension

Recall that the conservation law encountered during the derivation of the heat equation was given by,

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\kappa \nabla \cdot \phi=-\kappa \operatorname{div}(\phi), \tag{1}
\end{equation*}
$$

which reduces to

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\kappa \frac{\partial \phi}{\partial x}, \kappa \in \mathbb{R} \tag{2}
\end{equation*}
$$

in one-dimension of space. ${ }^{1}$ In general, if the function $u=u(x, t)$ represents the density of a physical quantity then the function $\phi=\phi(x, t)$ represents its flux. If we assume the ϕ is proportional to the negative gradient of u then, from (2), we get the one-dimensional heat/diffusion equation. ${ }^{2}$
1.1. Transport Equation. Assume that ϕ is proportional to u to derive, from (2), the convection/transport equation, $u_{t}+c u_{x}=0 c \in \mathbb{R}$.
1.2. General Solution to the Transport Equation. Show that $u(x, t)=f(x-c t)$ is a solution to this PDE.
1.3. Diffusion-Transport Equation. If both diffusion and convection are present in the physical system then the flux is given by, $\phi(x, t)=c u-d u_{x}$, where $c, d \in \mathbb{R}^{+}$. Derive from, (2), the convection-diffusion equation $u_{t}+\alpha u_{x}-\beta u_{x x}=0$ for some $\alpha, \beta \in \mathbb{R}$.
1.4. Convection-Diffusion-Decay. If there is also energy/particle loss proportional to the amount present then we introduce to the convection-diffusion equation the term λu to get the convection-diffusion-decay equation. ${ }^{3}$
1.5. General Importance of Heat/Diffusion Problems. Given that,

$$
\begin{equation*}
u_{t}=D u_{x x}-c u_{x}-\lambda u . \tag{3}
\end{equation*}
$$

Show that by assuming, $u(x, t)=w(x, t) e^{\alpha x-\beta t}$, (3) can be transformed into a heat equation on the new variable w where $\alpha=c /(2 D)$ and $\beta=\lambda+c^{2} /(4 D) .{ }^{4}$

2. One Dimensional Heat Equation with Source Term

Given,

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}+F(x, t) \tag{4}
\end{equation*}
$$

where $x \in(0, L)$ and $t \in(0, \infty)$, subject to

$$
\begin{equation*}
u_{x}(0, t)=0, u_{x}(L, t)=0, \tag{5}
\end{equation*}
$$

and
(6)

$$
u(x, 0)=g(x)
$$

[^0]2.1. Cosine Half-Range Expansion. Let $F(x, t)=e^{-t} \sin \left(\frac{2 \pi}{L} x\right)$ be the heat generation function. Find the Fourier cosine half-range expansion of F.
2.2. General Solution. Using the previous result, solve for $G_{n}(t)$ for $n=0,1,2,3, \ldots$ assuming that $u(x, t)=G_{0}(t)+\sum_{n=1}^{\infty} \cos \left(\frac{n \pi}{L} x\right) G_{n}(t)$.

2.3. Fourier Coefficients. Assuming that $g(x)=\left\{\begin{array}{cc}\frac{2 k}{L} x, & 0<x<\frac{L}{2}, \\ \frac{2 k}{L}(L-x), & \frac{L}{2}<x<L\end{array}\right.$, solve for any unknown constants associated with the general solution.

3. Time Dependent Boundary Conditions

It makes sense to consider time-dependent interface conditions. That is, (4) and (6) subject to

$$
\begin{equation*}
u(0, t)=g(t), \quad u(L, t)=h(t), \quad t \in(0, \infty) \tag{7}
\end{equation*}
$$

Show that this PDE transforms into:

$$
\begin{array}{cll}
\frac{\partial w}{\partial t}=c^{2} \frac{\partial^{2} w}{\partial x^{2}}-S_{t}(x, t) & , \\
x \in(0, L), & t \in(0, \infty), & c^{2}=\frac{\kappa}{\rho \sigma} . \tag{9}
\end{array}
$$

with boundary conditions and initial conditions,

$$
\begin{array}{r}
w(0, t)=w(L, t)=0, \\
w(x, 0)=F(x) \tag{11}
\end{array}
$$

where $F(x)=f(x)-S(x, 0)$ and $S(x, t)=\frac{h(t)+g(t)}{L} x+g(t) .{ }^{5}$

4. Coordinate Systems, Multivariate Chain Rule and the Laplacian

Recall that the Laplacian, $\Delta u=u_{x x}+u_{y y}+u_{z z}$, was a general term in the heat equation in \mathbb{R}^{3+1}. This is especially nice in Cartesian coordinates but if you change coordinates then the multivariate chain rule must be used to convert the associated derivatives. For example in polar coordinates $r=\sqrt{x^{2}+y^{2}}$ and $u_{r}(x, y)=u_{r} r_{x}+u_{r} r_{y}$. For this reason the Laplacian changes form in cylindrical and spherical coordinates.
4.1. Laplacian in Cylindrical Coordinates. Show that if $x=r \cos (\theta)$ and $y=r \sin (\theta)$ then $\triangle u=u_{r r}+r^{-1} u_{r}+r^{-2} u_{\theta \theta}+u_{z z}$.
4.2. Laplacian in Spherical Coordinates. Show that if $x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi)$ and $z=\rho \cos (\phi)$ then $\triangle u=u_{r r}+$ $2 r^{-1} u_{r}+r^{-2} u_{\phi \phi}+r^{-2} \cot (\phi) u_{\phi}+r^{-2} \csc ^{2}(\phi) u_{\theta \theta}$

5. Sturm-Liouville Problems

A Sturm-Liouville eigenproblem is given by,

$$
\begin{equation*}
L u=\frac{1}{w(x)}\left(-\frac{d}{d x}\left[p(x) \frac{d u}{d x}\right]+q(x) u\right)=\lambda u, \lambda \in \mathbb{C} \tag{12}
\end{equation*}
$$

whose nontrivial eigenfunctions must satisfy the boundary conditions,

$$
\begin{align*}
& l_{1} u(a)+l_{2} u^{\prime}(a)=0 \tag{13}\\
& r_{1} u(b)+r_{2} u^{\prime}(b)=0 . \tag{14}
\end{align*}
$$

5.1. Orthogonality of Solutions: Special Case. Let $l_{2}=r_{2}=0, a=0, b=\pi, w(x)=1, p(x)=1$ and $q(x)=0$ and show that (12) with (13)-(14) defines a set of an orthogonal functions.
5.2. Orthogonality of Solutions: General Case (Extra Credit). Let (λ_{1}, u_{1}) and (λ_{2}, u_{2}) be two different eigenvalue/eigenfunction pairs. Show that u_{1} and u_{2} are orthogonal. That is, show that $\left\langle u_{1}, u_{2}\right\rangle=0$ with respect to the inner-product defined by $\langle f, g\rangle=$ $\int_{a}^{b} f(x) g(x) d x$.
5.3. Bessel's Equation. Show that if $p(x)=x, q(x)=\nu^{2} / x$ and $w(x)=x / \lambda$ then (12) becomes $x^{2} u^{\prime \prime}+x u^{\prime}+\left(x^{2}-\nu^{2}\right) u=0$, which is known as Bessel's equation of order ν.

[^1]5.4. Fourier Bessel Series. A solution to Bessel's equation is for $\nu=n \in \mathbb{N}$,
\[

$$
\begin{equation*}
J_{n}(x)=x^{n} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{2^{2 m+n} m!(n+m)!}, n=1,2,3, \ldots \tag{15}
\end{equation*}
$$

\]

which is called Bessel's function of the first-kind of order n. Since these functions manifest from a SL problem they naturally orthogonal and have an orthogonality condition,

$$
\begin{equation*}
\left\langle J_{n}\left(x k_{n, m}\right), J_{n}\left(x k_{n, i}\right)\right\rangle=\int_{0}^{R} x J_{n}\left(x k_{n, m}\right) J_{n}\left(x k_{n, i}\right) d x=\frac{\delta_{m i}}{2}\left[R J_{n+1}\left(k_{n m} R\right)\right]^{2} \tag{16}
\end{equation*}
$$

Using this show that the coefficients in the Fourier-Bessel series,

$$
\begin{equation*}
f(x)=\sum_{m=1}^{\infty} a_{m} J_{n}\left(k_{n, m} x\right), \tag{17}
\end{equation*}
$$

are given by,

$$
\begin{equation*}
a_{i}=\frac{2}{R^{2} J_{n+1}^{2}\left(k_{n, m} R\right)} \int_{0}^{R} x J_{n}\left(k_{n, i} R\right) f(x) d x, \quad i=1,2,3, \ldots \tag{18}
\end{equation*}
$$

[^0]: ${ }^{1}$ When discussing heat transfer this is known as Fourier's Law of Cooling. In problems of steady-state linear diffusion this would be called Fick's First Law. In discussing electricity u could be charge density and q would be its flux.
 ${ }^{2}$ AKA Fick's Second Law associated with linear non-steady-state diffusion.
 ${ }^{3}$ The $u_{x x}$ term models diffusion of energy/particles while u_{x} models convection, u models energy/particle loss/decay. The final term should not be surprising! Wasn't the appropriate model for radioactive/exponential decay $Y^{\prime}=-\alpha^{2} Y$?
 ${ }^{4}$ This shows that the general PDE (3), which models can be solved using heat equation techniques.

[^1]: ${ }^{5}$ A similar transformation can be found for the wave equation with inhomogeneous boundary conditions. The moral here is that time-dependent boundary conditions can be transformed into externally driven (AKA Forced or inhomogeneous) PDE with standard boundary conditions.

