
MATH348-Advanced Engineering Mathematics Homework: PDEs - Part II

Conservation Laws, Source Terms, Diffusion in R2+1, Chain Rule, SL-Problems

Text: 12.8,12.9 Lecture Notes : N/A Lecture Slides: N/A

Quote of Homework Five

And the feeling is that there’s something wrong, ’cause I can’t find the words, and I can’t

find the songs.

Radiohead : Stop Whispering (1993)

1. Conservation Laws in One-Dimension

Recall that the conservation law encountered during the derivation of the heat equation was given by,

∂u

∂t
= −κ∇ · φ = −κdiv(φ),(1)

which reduces to

∂u

∂t
= −κ∂φ

∂x
, κ ∈ R(2)

in one-dimension of space.1 In general, if the function u = u(x, t) represents the density of a physical quantity then the function φ = φ(x, t)

represents its flux. If we assume the φ is proportional to the negative gradient of u then, from (2), we get the one-dimensional heat/diffusion

equation. 2

1.1. Transport Equation. Assume that φ is proportional to u to derive, from (2), the convection/transport equation, ut+cux = 0 c ∈ R.

1.2. General Solution to the Transport Equation. Show that u(x, t) = f(x− ct) is a solution to this PDE.

1.3. Diffusion-Transport Equation. If both diffusion and convection are present in the physical system then the flux is given by,

φ(x, t) = cu− dux, where c, d ∈ R+. Derive from, (2), the convection-diffusion equation ut + αux − βuxx = 0 for some α, β ∈ R.

1.4. Convection-Diffusion-Decay. If there is also energy/particle loss proportional to the amount present then we introduce to the

convection-diffusion equation the term λu to get the convection-diffusion-decay equation.3

1.5. General Importance of Heat/Diffusion Problems. Given that,

(3) ut = Duxx − cux − λu.

Show that by assuming, u(x, t) = w(x, t)eαx−βt, (3) can be transformed into a heat equation on the new variable w where α = c/(2D) and

β = λ+ c2/(4D).4

2. One Dimensional Heat Equation with Source Term

Given,

∂u

∂t
= c2

∂2u

∂x2
+ F (x, t),(4)

where x ∈ (0, L) and t ∈ (0,∞), subject to

ux(0, t) = 0, ux(L, t) = 0,(5)

and

u(x, 0) = g(x).(6)

1When discussing heat transfer this is known as Fourier’s Law of Cooling. In problems of steady-state linear diffusion this would be called Fick’s

First Law. In discussing electricity u could be charge density and q would be its flux.
2AKA Fick’s Second Law associated with linear non-steady-state diffusion.
3The uxx term models diffusion of energy/particles while ux models convection, u models energy/particle loss/decay. The final term should not be

surprising! Wasn’t the appropriate model for radioactive/exponential decay Y ′ = −α2Y ?
4This shows that the general PDE (3), which models can be solved using heat equation techniques.
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2.1. Cosine Half-Range Expansion. Let F (x, t) = e−t sin

(
2π

L
x

)
be the heat generation function. Find the Fourier cosine half-range

expansion of F .

2.2. General Solution. Using the previous result, solve for Gn(t) for n = 0, 1, 2, 3, . . . assuming that u(x, t) = G0(t)+

∞∑
n=1

cos
(nπ
L
x
)
Gn(t).

2.3. Fourier Coefficients. Assuming that g(x) =

{
2k
L
x, 0 < x < L

2
,

2k
L

(L− x), L
2
< x < L

, solve for any unknown constants associated with the

general solution.

3. Time Dependent Boundary Conditions

It makes sense to consider time-dependent interface conditions. That is, (4) and (6) subject to

u(0, t) = g(t), u(L, t) = h(t), t ∈ (0,∞)(7)

Show that this PDE transforms into:

∂w

∂t
= c2

∂2w

∂x2
− St(x, t) ,(8)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
κ

ρσ
.(9)

with boundary conditions and initial conditions,

w(0, t) = w(L, t) = 0,(10)

w(x, 0) = F (x),(11)

where F (x) = f(x)− S(x, 0) and S(x, t) =
h(t) + g(t)

L
x+ g(t). 5

4. Coordinate Systems, Multivariate Chain Rule and the Laplacian

Recall that the Laplacian, 4u = uxx + uyy + uzz, was a general term in the heat equation in R3+1. This is especially nice in Cartesian

coordinates but if you change coordinates then the multivariate chain rule must be used to convert the associated derivatives. For example

in polar coordinates r =
√
x2 + y2 and ur(x, y) = urrx + urry. For this reason the Laplacian changes form in cylindrical and spherical

coordinates.

4.1. Laplacian in Cylindrical Coordinates. Show that if x = r cos(θ) and y = r sin(θ) then 4u = urr + r−1ur + r−2uθθ + uzz.

4.2. Laplacian in Spherical Coordinates. Show that if x = ρ cos(θ) sin(φ), y = ρ sin(θ) sin(φ) and z = ρ cos(φ) then 4u = urr +

2r−1ur + r−2uφφ + r−2 cot(φ)uφ + r−2 csc2(φ)uθθ

5. Sturm-Liouville Problems

A Sturm-Liouville eigenproblem is given by,

Lu =
1

w(x)

(
− d

dx

[
p(x)

du

dx

]
+ q(x)u

)
= λu, λ ∈ C(12)

whose nontrivial eigenfunctions must satisfy the boundary conditions,

l1u(a) + l2u
′(a) = 0(13)

r1u(b) + r2u
′(b) = 0.(14)

5.1. Orthogonality of Solutions: Special Case. Let l2 = r2 = 0, a = 0, b = π, w(x) = 1, p(x) = 1 and q(x) = 0 and show that (12)

with (13)-(14) defines a set of an orthogonal functions.

5.2. Orthogonality of Solutions: General Case (Extra Credit). Let (λ1, u1) and (λ2, u2) be two different eigenvalue/eigenfunction

pairs. Show that u1 and u2 are orthogonal. That is, show that 〈u1, u2〉 = 0 with respect to the inner-product defined by 〈f, g〉 =∫ b

a

f(x)g(x)dx.

5.3. Bessel’s Equation. Show that if p(x) = x, q(x) = ν2/x and w(x) = x/λ then (12) becomes x2u′′ + xu′ + (x2 − ν2)u = 0, which is

known as Bessel’s equation of order ν.

5A similar transformation can be found for the wave equation with inhomogeneous boundary conditions. The moral here is that time-dependent

boundary conditions can be transformed into externally driven (AKA Forced or inhomogeneous) PDE with standard boundary conditions.
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5.4. Fourier Bessel Series. A solution to Bessel’s equation is for ν = n ∈ N,

Jn(x) = xn
∞∑
m=0

(−1)mx2m

22m+nm!(n+m)!
, n = 1, 2, 3, . . .(15)

which is called Bessel’s function of the first-kind of order n. Since these functions manifest from a SL problem they naturally orthogonal

and have an orthogonality condition,

〈Jn(xkn,m), Jn(xkn,i)〉 =

∫ R

0

xJn(xkn,m)Jn(xkn,i)dx =
δmi
2

[RJn+1(knmR)]2 .(16)

Using this show that the coefficients in the Fourier-Bessel series,

f(x) =

∞∑
m=1

amJn(kn,mx),(17)

are given by,

ai =
2

R2J2
n+1(kn,mR)

∫ R

0

xJn(kn,iR)f(x)dx, i = 1, 2, 3, . . .(18)
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