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E. Kreyszig, Advanced Engineering Mathematics, 9th ed. Section 7.8, pgs. 315-322

Lecture: Construction and Properties of A−1 Module: 04

Suggested Problem Set: Suggested Problems : {7, 8, 15, 17, 19} September 4, 2009

E. Kreyszig, Advanced Engineering Mathematics, 9th ed. Section 7.7, pgs. 308-315

Lecture: Determinants and Cramer’s Rule Module: 05

Suggested Problem Set: Suggested Problems : {5, 6, 13, 15, 16, 19, 24(a,b,c)} September 4, 2009

Quote of Lecture 4

Jerry: (Knocking on Kramer’s door) Hello? Is Kramer home? Oh, hey.

Kramer: (Spraying his flowers) Hello, neighbour.

Jerry: Boy, those azaleas are really coming in nicely.

Kramer: Oh, you gotta mulch. You’ve got to.

Jerry: You barbecuing tonight?

Kramer: (Ringing his wind chimes) Right after the fireworks.

Seinfeld: The Serenity Now (1997)

Up to this point we have built some logic and intuition supporting the idea that to methodically solve a

linear system efficiently we rewrite the system as a matrix vector product, Ax = b, where Am×n is a matrix

containing the coefficient data for the system and b is an inhomogeneity, which corresponds to translations

of the linear equations in space. The goal now is to find the vector unknown x and to do this we apply the

row-reduction algorithm to the corresponding augmented matrix [A|b]. 1

We say that if m < n then there are fewer equations than unknowns and that the system is under-determined

and expect that at best there may be infinitely many solutions.2 If m > n then there are more equations

than unknowns and the system is over-determined and in this case we expect that solutions may exist and

possibly be unique.3 The final case, m = n, provides more intuition about the behavior of solutions to linear

systems. In the following we recap the results for square systems (as many equations as unknowns) and add

to this growing list of equivalent statements:

1. There exists a unique solution, x ∈ Rn×1 to the system Ax = b for every b ∈ Rn×1.

2. The homogeneous system Ax = 0 has only the trivial solution, x = 0.

3. A ∼ I

4. There is a pivot in every column of the coefficient matrix.

5. The columns of A are linearly independent. 4

1At this point it should be clear to the reader that if A ∈ Rm×n then x ∈ Rn×1 and b ∈ Rm×1.
2Quick sanity check: If two planes are placed in space then at best they will intersect at a line or be the same

plane.
3See homework 1 problem 5 for a case where three-lines are given and that these three lines have a common

intersection.
4We haven’t yet used the term ‘linearly independent’, but we will.
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So, from this we gather the following idea, ‘If the solution to a square system, Ax = b, exists and is

unique then there must exist an inverse matrix A−1 such that x = A−1b.’ At this point our logic begs the

questions:

• Given a square matrix A, assuming that it’s inverse, A−1, exists then how do we find it?5

• Suppose we don’t want to actually find A−1. Is there a way to know that A−1 exists without finding

it?6

Goals

• Understand the relationship between inverse matrices and solutions of linear systems.

• Connect the concept of determinants for square matrices with existence of inverses and solubility of

square linear systems.

Objectives

• Define an algorithm for inverse matrices using it’s proposed algebraic properties.

• Define and apply the cofactor expansion method for calculating determinants of square matrices.

• Connect the previous concepts by utilizing them to solve Ax = b.

• Record, without proof, some of the properties of inverse matrices and determinant calculations.

5It turns out that one can find this matrix by the same process used to solve the linear system itself.
6There is a matrix function called the determinant. This function returns a scalar, which will tell us whether the

columns of A are linearly independent and thus invertible.


