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Again this equation can be integrated yielding

ﬁm&b = clIn|x,(8) — x,-,(O)| + 4d,.

Let us consider a steady-state situation, in which case
u=—clnp+d.

Once more the integration constant is chosen such that at maximum density,
the velocity is zero. In that way

u=—cln-L_,
EE-N

sketched in Fig. 64-3. Difficulties as p — 0 are again avoided by assuming

Ny Figure 64-3 Nonlinear steady-state car-fol-
" Prmax p lowing model: velocity-density relationship.

that for low densities, # = u,,,. The constant ¢ is chosen (perhaps by a
least-squares fit) so that the formula agrees well with observed data on a given
highway. This formula can be shown to agree quite well with the observed
data. The constant ¢ has a simple interpretation, namely we will now show it
is the velocity corresponding to the maximum flow:

= pu=— p —dq _ _ p
q = pu cpln - and 0 = nAE P + _v
imply that the maximum traffic flow occurs at p = p,.,./e, in which case the
velocity at the maximum flow is ¢,

=Ab M.av =c.

Many other types of similar car-following theories have been formulated
by traffic researchers. They help to explain the relationship between the
individual action of single drivers and their collective behavior described by
the velocity-density curve.

EXERCISES

64.1. Consider the linear car-following model, equation 64.2, with a response time
T (a delay).
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(a) Solve for the velocity of the nth car, v, = dx,/dt. Show that
Dl D) 3ont) — vna .

(b) Assume the lead driver’s velocity varies periodically R
vg = Re (1 + e'*).
Also assume the nth driver’s velocity varies periodically
v, = Re (1 + fre'),
where f, measures the amplification or decay which occurs. Show that

fi=(1+%er) ",

where fy = 1.
(c) Show the magnitude of the amplification factor \a decreases with n if
- sinwT _ 1
o 21

(d) Show that the above inequality holds for all @ only if AT < 4.

(¢) Conclude that if the product of the sensitivity and the time lag is greater
than 1, it is possible for following cars to drive much more erratically
than the leader. In this case we say the model predicts instability if
AT = } (i.e., with a sufficiently long time lag). (This conclusion can be
reached more expeditiously through the use of Laplace transforms.)

Consider the linear car-following model, equation 64.2, with a response time

T (a delay).
(a) Solve for the velocity of the nth car, v, = dx,/dt. Thus show that

BT — —20u) = vaes®).
(b) Consider two cars only, the leader and the follower. Thus
BT 4 Jae) = Avo).

Look for homogeneous solutions (vs(t) = 0) of the form e™. Show that
these solutions are exponentially damped if 1/e > AT > 0.

(c) For what values of AT do solutions exist of the form e” with r complex,
such that the solutions are oscillatory with growing, decaying, or con-
stant amplitude?

As with exercise 64.1, the use of Laplace transforms simplifies the above

calculations.

General car-following models of the following form can be considered:

by — Bk )
Parss+T) _ s O)" dt
dt? =" d X 0) — X1 OF

Note that the linear model, equation 64.2, corresponds to m = 0, I == 0 and
the inverse-spacing model, equation 64.5, m = 0, = 1.




