Example: linear resonator (1D)

Z=0 I < > I 7=
Boundary conditions: conducting ends (mirrors)
E(z=0,4)=0 E (z=L,.t)=0
Field is a superposition of +'ve and —'ve waves:
E (z,t)=A Vi) 4 g plkaortd)

Absorb phase into complex amplitude
E (z,t)= (A+e+ikzZ + A_e_ikzz)e_iwt

Apply b.c.atz=20

E (0,£)=0=(A,+A )™ > A =-A

+ —

E (z,t)=Asink_z e™
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Quantization of frequency: longitudinal
modes

* Apply b.c. at far end
E (L,.t)=0=Asink L e ™

— kL =qmnr  g=12,3,--

* Relate to wavelength: - \/ >

2w qm A
k.=—-=""—>L =97 /\/\/
S0 2

Z

Integer number of /\/\/\

half-wavelengths fit

in the resonator /\/\/\/
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Quantization of frequency: longitudinal
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2D resonator

* Assume separable function
E(x,y.0)~ £, (x) £,()2()
. az 82 2 82
vV E(x,y,t):ﬁE(x,y, )+JE(-}C YV, )_Z_BTE(X YV, )

« Solution takes the form:
E(x,y,t)= Eoeikxx ihyy -ion _ Eoei(kxx+kyy)e_iwt

E(X y, f) E i(kr-ot)
— Now k- vector can point in arbitrary direction

 With this solution in W.E.:

®° Valid even in waveguides

2 g2 2 _ 1.
T kx +ky =k-k and resonators

C
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2D resonator: fixed frequency

* If we fix the frequency, what modes can still fit?
« Example, n=1, c=1, L=1, k,=m T, ky=n T

— If m=20, n=1, 2
nzw—2=k§+ky2%a):7r\/m2+n2 ~ 2071
C

m=20, n=1 m=19, n=6
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All of these have close to the same frequency



Energy in EM waves and fields

« Statics: work is done to setup E or B
fields

— Charged capacitor: where does the energy get
stored?

- Vacuum, energy is in the electric field . -9
* Dielectric, energy also in polarized medium -
— Inductor: energy in field and magnetization
- Waves: energy stored in both E, B fields &
— Traveling wave: Poynting vector = vector form P Diclectric
of intensity. Energy is transported by beam

— Standing wave: stationary energy density
pattern

1

I
+

i

28



Wave energy and intensity
Work done
charging a

* Both E and H fields have a corresponding
capacitor

energy density (J/m?3)

— For static fields (e.g. in ) the energy _
density can be calculated through the work >
done to set up the field b=

sze—I;_:tnc

p=3€E +3uH’
— Some work is required to polarize the medium
— Energy is contained in both fields, but H field

can be calculated from E field
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H field from E field

« Maxwell equations relate E and H fields
* H field for a propagating wave is in phase with E-
fleld E:ﬁEO exp[i(kz—a)t)] Electromagnetic Wave

<4 Magnetic Field (_83
H=yH, exp[i(kz — a)t)]

.,
™

30:..
-

oB T <
——— =VXE S v 2"‘3’ Propagation
Bt Wavelength (A)\ n':g-g nectl\o:
ia)‘LLOH=l'kXE Figure 1 /

szwL‘uoEoexp[i(kz—a)t)]
 Amplitudes are not independent

n
H0 = —E0 = neocEO

30
ci,



Energy density in an EM wave

* The energy of the EM wave resides in both E and
H fields

« Energy density (J/m?3)

p:%gEzq_%‘uO[—]z H = ne ck
g=gn’

p=1en’E*+iun’e,’c’E’

He =1
2 12 2 12 2
p=¢gn E"=€gn"E" cos (kzz—a)t)
Equal energy in both components of wave
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Cycle-averaged energy density

» Optical oscillations are faster than detectors
* Average over onle cycle:
T
(p)=€n’E,’ —J cos’ (kzz — a)t)dt

0
— Graphically, we can see this should = 7%

kz=0
kz=1m/4
-
1
|
\
\
0.5 1.0 1.5 20 YT
— Independent of position z 1
_ (p)==¢g,n’E,
Independent of frequency w 2




Blackbody radiation

* A perfect
“blackbody” is Iin
thermal
equilibrium with
Its surroundings

— Absorbs all
Incoming light

— Smooth
radiation curve

14
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Spectral radance (KW -5 -ar® -m—?)
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/ \ Qassical theory (3000 K)
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General 3D plane wave solution

* Assume separable function
B(x,y,2.0~ £(x) £, (v) £,(2) ()

_. 0’ 0’ 9’ 9
VE(r,t) = yE(r,t)Jr e E(r, )+87E( )= %BTE(Z f)

« Solution takes the form:
E(x,y,z,t)=E, ik gy ikz jmion _ Eoei(kxx+kyy+kzz)e_iwt

E(x,y.2.1) = Eoei(kr—a)t)
— Now k-vector can point in arbitrary direction

e With this solution in W.E.:

2
W= K+ K =k k
C

Valid even in waveguides
and resonators
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Closed box resonator: blackbody cavity

* Here we have a 3D pattern of standing waves

— Exact boundary conditions aren’t important, but for
conducting walls:
« E=0 where field is parallel to wall
« Slope E=0 where field is perp to wall (charges can

accumulate there)

— Example standing wave solution:
E (x,y,z) = A _cosk x sinkyy sink_z

» Cos( ) function along field direction S L

— Others:
E (x,y,z) = A, sink xcosk ysink z

E (x,y,z) = A_sink x sk ycosk z 35
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Discrete wavevectors

* Discrete values of k:

kx — l_ﬂ: ky = m—ﬂ: kz — ﬂ
L L, L.
* With these solutions in the wave equation
2
)]
— =k, +k; +k. =k-k 2 allowed polarizations

C

— k’s are discrete, so there are discrete allowed
frequencies:

2 2 2
a),mn:c\/kj+k2+kj=c Im) jme|  jne
: L, L, L,
] 2 2 2
vlmn:i\/kf+k2+kf:c L
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Field in equilibrium with walls: classical

* Hold cavity walls at temperature T
« What is probability that a mode will be excited?
 Classical view (Boltzmann): P(&)«<e*"'

— assume the amount of energy in each mode can take any
value (continuous range) this is wrong!

— average energy for each mode is

(e ]

[gP(g)ag [ge®"ag
(g)=2 =2 = k,T

(e o]

TP(Z)dg Je_g/kBng

0 0
— Note: this is not kgT/2 as in equipartition of K.E. There,
integrate on velocity, which ranges — to +

37



The “ultraviolet catastrophe”

The classical prediction for black body radiation did fine
for low frequencies, but failed at higher frequencies (e.qg.
UVv)

The problem is that the 4
Toward the
number of allowed ulivaviolet

catastrophe"

modes increases
dramatically as the
wavelength gets
shorter.

Need to:

— Calculate the “density of
states” as f(w) -
) . i Curves agree at c 4 T
— Weight the probability of & very low frequencies ekT - 1
excitation correctly. f R .
Frequency

Radiated Intensity




Density of states

« For a given box size, there is a low frequency cutoff but no
cutoff for high frequencies

* Near a given frequency, there will be a number of
combinations of k's ,m,n for that frequency

volume of k-space octant

di N (k) = #pol states X .
volume of unit k-space cell

(4/3)mk’ K’

1
=° jr A
= X — X S0
” L. L, L
1 dN(k k®
Density of modes = density of states g(k)dk = V%dk =—dk
n’

2 2

© o g(v)dv = 87tv—3dv
C

2.3
T cC

Other forms: g(a))da) —



Spectral energy density

« Generalize EM energy density to allow for spectral
distribution

p(v)dv = excitation energy per mode X density of modes

— Total energy density: Jp(v)dv
— Classical form:

8V’
C3

dv

p(v)dv =k,T

— Problem: total energy is infinite!
* Planck: only allow quantized energies for each mode
E=(n+%)hv n = number of photons in each mode
— Now get average energy/mode with sum, not integral

Z Paiad Mean photon number: 7 = EnnPn
J

P =



Blackbody spectrum

 Mean number of photons per mode:

n=Y nb=1/("" 1)

« Spectral energy density of BB radiation:
p(v)dv = avg # photons per mode X hv per photon X density of modes

2E-16

Spectral density (J sm™)
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