

- Boundary conditions: conducting ends (mirrors)

$$
E_{x}(z=0, t)=0 \quad E_{x}\left(z=L_{z}, t\right)=0
$$

- Field is a superposition of +'ve and -'ve waves:

$$
E_{x}(z, t)=A_{+} e^{i\left(k_{z} z-\omega t+\phi_{+}\right)}+A_{-} e^{i\left(-k_{z} z-\omega t+\phi_{-}\right)}
$$

- Absorb phase into complex amplitude

$$
E_{x}(z, t)=\left(A_{+} e^{+i k_{z} z}+A_{-} e^{-i k_{z} z}\right) e^{-i \omega t}
$$

- Apply b.c. at z=0
$E_{x}(0, t)=0=\left(A_{+}+A_{-}\right) e^{-i \omega t} \rightarrow A_{+}=-A_{-}$
$E_{x}(z, t)=A \sin k_{z} z e^{-i \omega t}$

Quantization of frequency: longitudinal modes

- Apply b.c. at far end $E_{x}\left(L_{z}, t\right)=0=A \sin k_{z} L_{z} e^{-i o t}$
$\rightarrow k_{z} L_{z}=q \pi \quad q=1,2,3, \cdots$
- Relate to wavelength:

$k_{z}=\frac{2 \pi}{\lambda}=\frac{q \pi}{L_{z}} \rightarrow L_{z}=q \frac{\lambda}{2}$

Integer number of half-wavelengths fit in the resonator

Quantization of frequency: longitudinal modes

- Relate allowed wavelengths to frequency:

$$
k_{z}=\frac{2 \pi}{\lambda}=\frac{q \pi}{L_{z}} \rightarrow L_{z}=q \frac{\lambda}{2}
$$

$$
\begin{equation*}
\frac{\omega_{q}}{c}=\frac{q \pi}{L_{z}} \rightarrow v_{q}=q \frac{c}{2 L_{z}} \tag{3}
\end{equation*}
$$

2D resonator

- Assume separable function

$$
\begin{aligned}
& \mathbf{E}(x, y, t) \sim f_{1}(x) f_{2}(y) g(t) \\
& \vec{\nabla}^{2} \mathbf{E}(x, y, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(x, y, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(x, y, t)=\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}(x, y, t)
\end{aligned}
$$

- Solution takes the form:

$$
\begin{aligned}
& \mathbf{E}(x, y, t)=\mathbf{E}_{0} e^{i k_{x} x} e^{i k_{y}, y} e^{-i \omega t}=\mathbf{E}_{0} e^{i\left(k_{x} x+k_{y}, y\right)} e^{-i \omega t} \\
& \mathbf{E}(x, y, t)=\mathbf{E}_{0} e^{i(\mathbf{k} r-\omega t)}
\end{aligned}
$$

- Now k-vector can point in arbitrary direction
- With this solution in W.E.:

$$
n^{2} \frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2}=\mathbf{k} \cdot \mathbf{k}
$$

Valid even in waveguides and resonators

2D resonator: fixed frequency

- If we fix the frequency, what modes can still fit?
- Example, $n=1, c=1, L=1, k_{x}=m \pi, k_{y}=n \pi$
- If $m=20, n=1$,

$$
n^{2} \frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2} \rightarrow \omega=\pi \sqrt{m^{2}+n^{2}} \approx 20 \pi
$$

$m=20, n=1$

All of these have close to the same frequency

Energy in EM waves and fields

- Statics: work is done to set up E or B fields
- Charged capacitor: where does the energy get stored?
- Vacuum, energy is in the electric field
- Dielectric, energy also in polarized medium
- Inductor: energy in field and magnetization
- Waves: energy stored in both E, B fields
- Traveling wave: Poynting vector $=$ vector form ${ }^{\text {Dielectric }}$ of intensity. Energy is transported by beam
- Standing wave: stationary energy density pattern

Wave energy and intensity

- Both E and H fields have a corresponding energy density ($\mathrm{J} / \mathrm{m}^{3}$)
- For static fields (e.g. in
) the energy density can be calculated through the work done to set up the field

$$
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu H^{2}
$$

- Some work is required to polarize the medium
- Energy is contained in both fields, but H field can be calculated from E field

Work done charging a capacitor

H field from E field

- Maxwell equations relate E and H fields
- H field for a propagating wave is in phase with Efield $\mathbf{E}=\hat{\mathbf{x}} E_{0} \exp [i(k z-\omega t)]$
$\mathbf{H}=\hat{\mathbf{y}} H_{0} \exp [i(k z-\omega t)]$
$-\frac{\partial \mathbf{B}}{\partial t}=\nabla \times \mathbf{E}$
$i \omega \mu_{0} \mathbf{H}=i \mathbf{k} \times \mathbf{E}$

$$
\mathbf{H}=\hat{\mathbf{y}} \frac{k}{\omega \mu_{0}} E_{0} \exp [i(k z-\omega t)]
$$

- Amplitudes are not independent

$$
H_{0}=\frac{n}{c \mu_{0}} E_{0}=n \varepsilon_{0} c E_{0}
$$

Energy density in an EM wave

- The energy of the EM wave resides in both E and H fields
- Energy density $\left(\mathrm{J} / \mathrm{m}^{3}\right)$

$$
\begin{array}{ll}
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu_{0} H^{2} & H=n \varepsilon_{0} c E \\
\rho=\frac{1}{2} \varepsilon_{0} n^{2} E^{2}+\frac{1}{2} \mu_{0} n^{2} \varepsilon_{0}^{2} c^{2} E^{2} & \varepsilon=\varepsilon_{0} n^{2} \\
\mu_{0} \varepsilon_{0} c^{2}=1 \\
\rho=\varepsilon_{0} n^{2} E^{2}=\varepsilon_{0} n^{2} E^{2} \cos ^{2}\left(k_{z} z-\omega t\right)
\end{array}
$$

Equal energy in both components of wave

Cycle-averaged energy density

- Optical oscillations are faster than detectors
- Average over one cycle:

$$
\langle\rho\rangle=\varepsilon_{0} n^{2} E_{0}{ }^{2} \frac{1}{T} \int_{0}^{T} \cos ^{2}\left(k_{z} z-\omega t\right) d t
$$

- Graphically, we can see this should $=1 / 2$

- Independent of position z
- Independent of frequency ω

$$
\langle\rho\rangle=\frac{1}{2} \varepsilon_{0} n^{2} E_{0}{ }^{2}
$$

Blackbody radiation

- A perfect "blackbody" is in thermal equilibrium with its surroundings
- Absorbs all incoming light
- Smooth radiation curve

General 3D plane wave solution

- Assume separable function

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t) \sim f_{1}(x) f_{2}(y) f_{3}(z) g(t) \\
& \vec{\nabla}^{2} \mathbf{E}(\mathbf{r}, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(\mathbf{r}, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(\mathbf{r}, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(\mathbf{r}, t)=\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}(z, t)
\end{aligned}
$$

- Solution takes the form:

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i k_{x} x} e^{i k_{y}, y} e^{i k_{z} z} e^{-i \omega t}=\mathbf{E}_{0} e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)} e^{-i \omega t} \\
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i(\mathbf{k} r-\omega t)}
\end{aligned}
$$

- Now k-vector can point in arbitrary direction
- With this solution in W.E.:

$$
n^{2} \frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\mathbf{k} \cdot \mathbf{k}
$$

Valid even in waveguides and resonators

Closed box resonator: blackbody cavity

- Here we have a 3D pattern of standing waves
- Exact boundary conditions aren't important, but for conducting walls:
- $\mathrm{E}=0$ where field is parallel to wall
- Slope E=0 where field is perp to wall (charges can accumulate there)
- Example standing wave solution:

$$
E_{x}(x, y, z)=A_{x} \cos k_{x} x \sin k_{y} y \sin k_{z} z
$$

- $\operatorname{Cos}($) function along field direction

- Others:

$$
\begin{aligned}
& E_{y}(x, y, z)=A_{y} \sin k_{x} x \cos k_{y} y \sin k_{z} z \\
& E_{z}(x, y, z)=A_{z} \sin k_{x} x \sin k_{y} y \cos k_{z} z
\end{aligned}
$$

Discrete wavevectors

- Discrete values of k :

$$
k_{x}=\frac{l \pi}{L_{x}} \quad k_{y}=\frac{m \pi}{L_{y}} \quad k_{z}=\frac{n \pi}{L_{z}}
$$

- With these solutions in the wave equation

$$
\frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\mathbf{k} \cdot \mathbf{k} \quad 2 \text { allowed polarizations }
$$

- k's are discrete, so there are discrete allowed frequencies:

$$
\begin{aligned}
& \omega_{l m n}=c \sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}=c \sqrt{\left(\frac{l \pi}{L_{x}}\right)^{2}+\left(\frac{m \pi}{L_{y}}\right)^{2}+\left(\frac{n \pi}{L_{z}}\right)^{2}} \\
& v_{l m n}=\frac{c}{2 \pi} \sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}=c \sqrt{\left(\frac{l}{2 L_{x}}\right)^{2}+\left(\frac{m}{2 L_{y}}\right)^{2}+\left(\frac{n}{2 L_{z}}\right)^{2}}
\end{aligned}
$$

Field in equilibrium with walls: classical

- Hold cavity walls at temperature T
- What is probability that a mode will be excited?
- Classical view (Boltzmann): $\quad P(\boldsymbol{\varepsilon}) \propto e^{-\boldsymbol{\varepsilon} / k_{B} T}$
- assume the amount of energy in each mode can take any value (continuous range) this is wrong!
- average energy for each mode is

$$
\langle\boldsymbol{\varepsilon}\rangle=\frac{\int_{0}^{\infty} \varepsilon P(\boldsymbol{\varepsilon}) d \boldsymbol{\varepsilon}}{\int_{0}^{\infty} P(\boldsymbol{\varepsilon}) d \boldsymbol{\varepsilon}}=\frac{\int_{0}^{\infty} \boldsymbol{\varepsilon} e^{-\boldsymbol{\varepsilon} / k_{B} T} d \boldsymbol{\varepsilon}}{\int_{0}^{\infty} e^{-\boldsymbol{\varepsilon} / k_{B} T} d \boldsymbol{\varepsilon}}=k_{B} T
$$

- Note: this is not $k_{B} T / 2$ as in equipartition of K.E. There, integrate on velocity, which ranges - to +

The "ultraviolet catastrophe"

- The classical prediction for black body radiation did fine for low frequencies, but failed at higher frequencies (e.g. UV)
- The problem is that the number of allowed modes increases dramatically as the wavelength gets shorter.
- Need to:
- Calculate the "density of states" as $f(\omega)$
- Weight the probability of excitation correctly.

Density of states

- For a given box size, there is a low frequency cutoff but no cutoff for high frequencies
- Near a given frequency, there will be a number of combinations of k's I, m, n for that frequency

$$
\begin{aligned}
N(k) & =\text { \#pol states } \times \frac{\text { volume of k-space octant }}{\text { volume of unit k-space cell }} \\
& =2 \frac{\frac{1}{8}(4 / 3) \pi k^{3}}{\frac{\pi}{L_{x}} \times \frac{\pi}{L_{y}} \times \frac{\pi}{L_{z}}}=\frac{k^{3}}{3 \pi^{2}} V
\end{aligned}
$$

Density of modes = density of states

$$
g(k) d k=\frac{1}{V} \frac{d N(k)}{d k} d k=\frac{k^{2}}{\pi^{2}} d k
$$

Other forms:

$$
g(\omega) d \omega=\frac{\omega^{2}}{\pi^{2} c^{3}} d \omega \quad g(v) d \nu=8 \pi \frac{v^{2}}{c^{3}} d \nu
$$

Spectral energy density

- Generalize EM energy density to allow for spectral distribution
$\rho(v) d \nu=$ excitation energy per mode \times density of modes
- Total energy density: $\int \rho(v) d v$
- Classical form:

$$
\rho(v) d v=k_{B} T \frac{8 \pi v^{2}}{c^{3}} d v
$$

- Problem: total energy is infinite!
- Planck: only allow quantized energies for each mode

$$
\varepsilon=\left(n+\frac{1}{2}\right) h v \quad n=\text { number of photons in each mode }
$$

- Now get average energy/mode with sum, not integral

$$
P_{n}=\frac{e^{-\varepsilon_{n} / k_{B} T}}{\sum_{j} e^{-\varepsilon_{j} / k_{B} T}} \quad \text { Mean photon number: } \bar{n}=\sum_{n} n P_{n}
$$

Blackbody spectrum

- Mean number of photons per mode:

$$
\bar{n}=\sum_{j} n P_{n}=1 /\left(e^{h \nu / k_{B} T}-1\right)
$$

- Spectral energy density of BB radiation:
$\rho(v) d v=\operatorname{avg} \#$ photons per mode $\times h v$ per photon \times density of modes

$$
=\frac{1}{e^{h \nu / k_{B} T}-1} h \nu \mathrm{~g}(v) d \nu=8 \pi \frac{v^{2}}{c^{3}} \frac{h \nu}{e^{h \nu / k_{B} T}-1} d v_{\substack{\text { Toward the } \\ \text { Uutraviote } \\ \text { catastrophe" }}}
$$

Frequency

