
Example: linear resonator (1D) 

•  Boundary conditions: conducting ends (mirrors) 

•  Field is a superposition of +’ve and –’ve waves: 

•  Absorb phase into complex amplitude 

•  Apply b.c. at z = 0 

Ex z,t( ) = A+e
i kzz−ωt+φ+( ) + A−e

i −kzz−ωt+φ−( )

Ex z = 0,t( ) = 0 Ex z = Lz ,t( ) = 0

Ex z,t( ) = A+e
+ ikzz + A−e

− ikzz( )e− iωt

Ex 0,t( ) = 0 = A+ + A−( )e− iωt → A+ = −A−

Ex z,t( ) = Asin kzz e− iωt 23 

Z=0 Z=L 



Quantization of frequency: longitudinal 
modes 

•  Apply b.c. at far end 

•  Relate to wavelength: 

  

Ex Lz ,t( ) = 0 = Asin kz Lz e− iωt
→ kzLz = qπ  q = 1,2,3,!

kz =
2π
λ

= qπ
Lz

→ Lz = q
λ
2

Integer number of 
half-wavelengths fit 
in the resonator 
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Quantization of frequency: longitudinal 
modes 

•  Relate allowed 
wavelengths to frequency: 

kz =
2π
λ

= qπ
Lz

→ Lz = q
λ
2

ω q

c
= qπ
Lz

→νq = q
c
2Lz

Δν = c
2Lz

= 1
TRT

Frequency spacing 
= 1/ round trip time 

q 1 2 3 4 5 6 
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2D resonator 

26 

•  Assume separable function 

 
•  Solution takes the form: 

 
– Now k-vector can point in arbitrary direction 

•  With this solution in W.E.: 

    

!
∇2E x, y,t( ) = ∂2

∂x2 E x, y,t( ) + ∂2

∂y2 E x, y,t( ) = n2

c2

∂2

∂t2 E x, y,t( )
   E(x, y,t) ~ f1 x( ) f2 y( )g t( )

E(x, y,t) = E0e
ikxxeikyye− iωt = E0e

i kxx+kyy( )e− iωt

E(x, y,t) = E0e
i k⋅r−ωt( )

n2 ω
2

c2
= kx

2 + ky
2 = k ⋅k Valid even in waveguides 

and resonators 
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2D resonator: fixed frequency 
•  If we fix the frequency, what modes can still fit?  
•  Example, n=1, c=1, L=1, kx=m π, ky=n π 

–  If m=20, n=1,  

27 

n2 ω
2

c2
= kx

2 + ky
2 →ω = π m2 + n2 ≈ 20π

 m=20, n=1  m=19, n=6  m=12, n=16 

All of these have close to the same frequency 



Energy in EM waves and fields 
•  Statics: work is done to set up E or B 

fields 
–  Charged capacitor: where does the energy get 

stored? 
•  Vacuum, energy is in the electric field 
•  Dielectric, energy also in polarized medium  

–  Inductor: energy in field and magnetization 

•  Waves: energy stored in both E, B fields 
–  Traveling wave: Poynting vector = vector form 

of intensity. Energy is transported by beam 
–  Standing wave: stationary energy density 

pattern 
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Wave energy and intensity 
•  Both E and H fields have a corresponding 

energy density (J/m3) 
–  For static fields (e.g. in capacitors) the energy 

density can be calculated through the work 
done to set up the field 

 
–  Some work is required to polarize the medium 
–  Energy is contained in both fields, but H field 

can be calculated from E field 

ρ = 1
2 εE

2 + 1
2 µH

2

29 

Work done 
charging a 
capacitor 



H field from E field 
•  Maxwell equations relate E and H fields 
•  H field for a propagating wave is in phase with E-

field 

•  Amplitudes are not independent 
   

H = ŷH0 exp i k z −ω t( )⎡⎣ ⎤⎦

− ∂B
∂t

= ∇×E

iω µ0H = ik ×E

H = ŷ k
ω µ0

E0 exp i k z −ωt( )⎡⎣ ⎤⎦

  
H0 =

n
cµ0

E0 = nε0cE0 30 

   E = x̂E0 exp i k z −ω t( )⎡⎣ ⎤⎦



Energy density in an EM wave 
•  The energy of the EM wave resides in both E and 

H fields 
•  Energy density (J/m3) 

ρ = 1
2 εE

2 + 1
2 µ0H

2

ε = ε0n
2

  µ0ε0c
2 = 1

  H = nε0cE

ρ = 1
2 ε0n

2E2 + 1
2 µ0n

2ε0
2c2E2

ρ = ε0n
2E2 = ε0n

2E2 cos2 kzz −ωt( )
Equal energy in both components of wave 
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Cycle-averaged energy density 
•  Optical oscillations are faster than detectors 
•  Average over one cycle: 

–  Graphically, we can see this should = ½  

–  Independent of position z 
–  Independent of frequency ω 

ρ = ε0n
2E0

2 1
T

cos2 kzz −ωt( )dt
0

T

∫

t/T 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

k z = 0 

k z = π/4 

ρ = 1
2
ε0n

2E0
2



Blackbody radiation 
•  A perfect 

“blackbody” is in 
thermal 
equilibrium with 
its surroundings 
–  Absorbs all 

incoming light 
–  Smooth 

radiation curve 
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General 3D plane wave solution 
•  Assume separable function 

 
•  Solution takes the form: 

 
– Now k-vector can point in arbitrary direction 

•  With this solution in W.E.: 

    

!
∇2E r,t( ) = ∂2

∂x2 E r,t( ) + ∂2

∂y2 E r,t( ) + ∂2

∂z2 E r,t( ) = n2

c2

∂2

∂t2 E z,t( )
   E(x, y,z,t) ~ f1 x( ) f2 y( ) f3 z( )g t( )

E(x, y, z,t) = E0e
ikxxeikyyeikzze− iωt = E0e

i kxx+kyy+kzz( )e− iωt

E(x, y, z,t) = E0e
i k⋅r−ωt( )

n2 ω
2

c2
= kx

2 + ky
2 + kz

2 = k ⋅k Valid even in waveguides 
and resonators 
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Closed box resonator: blackbody cavity 
•  Here we have a 3D pattern of standing waves 

– Exact boundary conditions aren’t important, but for 
conducting walls: 

•  E=0 where field is parallel to wall 
•  Slope E=0 where field is perp to wall (charges can 

accumulate there) 
– Example standing wave solution: 

•  Cos( ) function along field direction 

– Others:  

  Ex x, y,z( ) = Ax coskxx sin ky y sin kz z
Ex + - 

  Ey x, y,z( ) = Ay sin kxxcosky y sin kz z

  Ez x, y,z( ) = Az sin kxx sin ky y coskz z 35 



Discrete wavevectors 
•  Discrete values of k: 

•  With these solutions in the wave equation 

–  k’s are discrete, so there are discrete allowed 
frequencies: 

ω 2

c2
= kx

2 + ky
2 + kz

2 = k ⋅k

kx =
lπ
Lx

ky =
mπ
Ly

kz =
nπ
Lz

ω lmn = c kx
2 + ky

2 + kz
2 = c lπ

Lx

⎛
⎝⎜

⎞
⎠⎟

2

+ mπ
Ly

⎛

⎝⎜
⎞

⎠⎟

2

+ nπ
Lz

⎛
⎝⎜

⎞
⎠⎟

2

ν lmn =
c
2π

kx
2 + ky

2 + kz
2 = c l

2Lx

⎛
⎝⎜

⎞
⎠⎟

2

+ m
2Ly

⎛

⎝⎜
⎞

⎠⎟

2

+ n
2Lz

⎛
⎝⎜

⎞
⎠⎟

2

2 allowed polarizations 
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Field in equilibrium with walls: classical 
•  Hold cavity walls at temperature T 
•  What is probability that a mode will be excited? 
•  Classical view (Boltzmann): 

–  assume the amount of energy in each mode can take any 
value (continuous range) this is wrong! 

–  average energy for each mode is 

–  Note: this is not kBT/2 as in equipartition of K.E. There, 
integrate on velocity, which ranges – to + 

 P E( )∝ e−E /kBT

 

E =
E P E( )

0

∞

∫ dE

P E( )
0

∞

∫ dE
=

E e−E /kBT dE
0

∞

∫

e−E /kBT

0

∞

∫ dE
= kBT
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The “ultraviolet catastrophe” 
•  The classical prediction for black body radiation did fine 

for low frequencies, but failed at higher frequencies (e.g. 
UV) 

•  The problem is that the 
number of allowed 
modes increases 
dramatically as the 
wavelength gets 
shorter.  

•  Need to: 
–  Calculate the “density of 

states” as f(ω) 
–  Weight the probability of 

excitation correctly.  



Density of states 
•  For a given box size, there is a low frequency cutoff but no 

cutoff for high frequencies 
•  Near a given frequency, there will be a number of 

combinations of k’s l,m,n for that frequency 

N k( ) = #pol states ×  volume of k-space octant
volume of unit k-space cell

= 2
1
8 4 / 3( )π k 3

π
Lx

× π
Ly

× π
Lz

= k 3

3π 2 V

Density of modes = density of states g k( )dk = 1
V
dN k( )
dk

dk = k2

π 2 dk

g ω( )dω = ω 2

π 2c3
dω g ν( )dν = 8π ν 2

c3
dνOther forms: 



Spectral energy density 
•  Generalize EM energy density to allow for spectral 

distribution 

–  Total energy density:  
–  Classical form: 

–  Problem: total energy is infinite! 
•  Planck: only allow quantized energies for each mode 

–  Now get average energy/mode with sum, not integral 
 

ρ ν( )dν = excitation energy per mode × density of modes

ρ ν( )dν = kBT
8πν 2

c3
dν

ρ ν( )dν∫

 E = n + 1
2( )hν

 
Pn =

e−En /kBT

e−E j /kBT

j∑ Mean photon number:   

n = number of photons in each mode 

n = nPnn∑



Blackbody spectrum 
•  Mean number of photons per mode:  

•  Spectral energy density of BB radiation: 
ρ ν( )dν = avg # photons per mode × hν per photon × density of modes

= 1
ehν /kBT −1

hν g ν( )dν = 8π ν 2

c3
hν

ehν /kBT −1
dν

n = nPnj∑ = 1 ehν /kBT −1( )
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